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1 Introduction
Causal inference is an important task for empirical macro, but it is also a particularly
challenging one. In macro time series, instances of clear and indisputable exogenous variation
are rare and researchers often face a difficult trade-off between credibility and efficiency. On
the one hand, focusing on only the most convincing sources of exogenous variation will yield
credible but also very imprecise causal estimates. On the other hand, including a large
number of events will yield precise but little credible estimates.

This trade-off is most evident in the two main identification approaches that have dom-
inated macro over the past 40 years: the narrative identification approach pioneered by
Friedman and Schwartz (1963) and Romer and Romer (1989), and the parametric identifi-
cation approach pioneered by Sims (1980).

On one side of the spectrum, the narrative approach consists in exploiting real time
narrative records (e.g., newspapers, government reports, or policy meeting transcripts) in
order to identify shocks —exogenous movements in a variable of interest— and construct
a narrative instrument series—.1 This approach is arguably the gold standard in terms of
credibility and transparency, but it is constrained by an important limitation: instances
of uncontroversial exogenous variation are rare.2 This can lead to an efficiency problem,
i.e., large and uninformative confidence bands and/or estimates that are overly sensitive to
specification choices.

On the other side of the spectrum, the parametric identification approach estimates causal
effects by imposing restrictions on parameters in time series models that are informed by
economic theory, institutional characteristics or statistical features of the data.3 Unlike the
narrative approach, the parametric identification approach isolates shocks at each point in
time leading to (ceteris paribus) more precise estimates. Unfortunately, this higher efficiency
can come at the cost of lower credibility, as parametric identifying restrictions have not gone
unchallenged (e.g., Nakamura and Steinsson, 2018).

In this work, we show how the combination of two large literatures —narrative identifica-
tion and parametric identification— can substantially improve the power-credibility trade-off
in macro: approaching the high efficiency of parametric identification while preserving the

1Intuitively, the idea is to exploit the rich information contained in the narrative accounts in order to
overcome reverse causality and omitted variable biases. Popular narratively identified series include the oil
shocks of Hamilton (1983, 1985), the monetary event series of Romer and Romer (1989), the government
spending news shocks of Ramey (2011) and Ramey and Zubairy (2018), the tax shocks of Romer and Romer
(2010); Cloyne (2013), and the financial shocks of Reinhart and Rogoff (2009), Jalil (2015) and Romer and
Romer (2017), among many others.

2As we will see, the typical narrative instrument series has 80% of its values equal to zero (see Table 1).
3Prominent examples include structural VARs or local projections with short run, long run, heteroskedas-

tic or non-Gaussian restrictions, or functional form restrictions in DSGE models (e.g., Herbst and Schorfheide,
2016; Ramey, 2016; Kilian and Lütkepohl, 2017).
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high credibility of narrative identification. More generally, we propose a method that ex-
ploits endogenous but widely available IVs in order to increase the power of exogenous but
sparse IVs.

Our starting point is to explicitly acknowledge the difficultly of identifying exogenous
variation in macro time series. To that effect, we split the data into two (not necessarily
consecutive) samples: a good sample in which a researcher possesses a valid instrument, for
instance a set of dates where the narrative identification is deemed credible, and a bad sample
where credible identification is missing. The key insight underlying our method is that it is
possible to use the bad sample to improve the precision of causal estimates. Specifically, the
good sample is used for the identification of the parameter of interest, while the bad sample
is used to improve efficiency.

To make things clear, say we are interested in estimating a parameter θ capturing the
effect of some policy variable pt on some outcome variable yt. A valid instrumental variable
zt is available but only over the good sample, while an innovation to pt, call it vt, is available
over the full sample.4 Our proposed method —Innovation-Powered IV (IPIV)— can be seen
as proceeding in two steps. In a first step, we use the innovation vt to construct an estimator
for θ. This innovation-based, or “reduced-form”, estimator will have low variance since it
exploits the entire sample, but it will likely be biased since the innovation vt is not a valid
instrument —the parametric identification scheme is not fully credible—. Thus, in a second
step we use the valid instrument zt to estimate (and then correct) the bias of this reduced-
form estimator. While this bias correction will have a cost in terms higher variance, we can
guarantee asymptotic variance reductions relative to a conventional IV estimator based on
zt alone.

The efficiency gains from IPIV stem from two forces: (a) the use of a larger sample
to construct reduced-form estimates, and (b) the use of innovations to best approach the
efficiency of a valid instrument available over the full sample.

First, like our method, any conventional IV estimator can be seen as a two step process
that (i) constructs an initial reduced-form estimate, and (ii) uses the IV to estimate and
correct the bias of that reduced-form estimate (e.g. Hausman, 1978). Compared to regular
IV however, IPIV uses a larger sample to construct a more precise reduced-form estimate,
and this ultimately leads to a more precise θ estimate. The key underlying assumption for
this to work is conditional selection ignorability (e.g. Wooldridge, 2007). Intuitively, as long
as the credible instrument periods arrive at random conditional on controls, (appropriately
re-weighted) covariances between macro variables will be the same on average in the good

4A typical example of an innovation to pt would be the residual of a time series regression of pt on some
contemporaneous and lagged variables, as in Sims (1980)’s recursive ordering for instance, but any other
parametric identification scheme can be used.
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and in the bad samples, and the bad sample can be used to improve efficiency.5 Importantly,
conditional selection ignorability does allow for a non-random arrival of credible identification
periods; for instance it may be easier to identify shocks depending on the state of the economy
or on the size of the underlying shocks.

The second factor underlying IPIV’s performance is the use of innovations: the closer
vt is to being a valid instrument, i.e., the better the parametric identification scheme, the
larger are the efficiency gains relative to a conventional IV estimator based on zt alone.
Intuitively, the smaller the share of residual endogeneity in vt, the smaller the bias correction
term, and thus the larger the relative gains from improving the precision of the reduced-form
estimator. In the limit where an innovation has no residual endogeneity left —the parametric
identification scheme is valid and the bias is zero—, we obtain the efficiency of a conventional
IV estimator when the IV is available over the full sample.

Innovation powering is particularly promising for macro applications, precisely because
the two forces underlying the gains in efficiency are most at work in macro: (a) the good
sample with a credible IV is typically small in macro, averaging only about 20 percent of the
full sample size, and (b) a large macro-econometric literature has proposed perhaps not fully
credible but at least “close-to-credible” identification schemes, ensuring that the innovations
contain little residual endogeneity. Combining (a) and (b), for an innovation approaching a
valid IV, IPIV will thus approach a theoretical limit of a 5-fold (1/0.2) reduction in variance
compared to a conventional narrative IV.

From an econometrics perspective, we show that innovation powering can be cast in the
generalized method of moment (GMM) framework of Hansen (1982), where the moment
conditions include the conventional IV moment conditions based on the credible instrument
zt as well as the “innovation powered moment conditions” based on using the time series
innovations vt as instruments (after bias correcting). The model can be completed by in-
cluding moments that determine the selection probabilities for having a credible instrument
at a particular date, allowing the arrival of credible identification to depend on the state of
the economy. Further, since narrative instruments are often weak in practice, our preferred
inference approach follows the weak instrument literature and we develop an innovation pow-
ered version of the Anderson and Rubin (1949) statistic, see also Stock and Wright (2000)
and Andrews and Guggenberger (2019).

We illustrate innovation powering by revisiting the seminal narrative works of Romer and
Romer (1989, 2023) and Ramey and Zubairy (2018). Using innovations constructed from
standard time series models à la Sims (1980), we find that IPIV delivers large reductions
in confidence intervals: the weak IV robust innovation-powered Anderson-Rubin bands are

5The selection ignorability assumption can be tested, and we provide a specification test, analog to the
covariate balance checks used in causal inference, to assess its validity (e.g. Imbens and Rubin, 2015).
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40%-50% smaller in length when compared to the conventional AR bands. In fact, armed
with the higher efficiency of IPIV we derive new results on the effects of monetary and fiscal
policy.

First, we address a critique of the narrative approach going back to Hoover and Perez
(1994): in finite sample, some of the narratively identified shocks can co-coincide (by chance)
with other structural shocks. When there are relatively few narrative shocks, such finite
sample confounding can substantially bias the estimated effect of interest. We show that
finite sample confounding does indeed occur for both the Romer and Romer (2023) and the
Ramey and Zubairy (2018) shock proxy series, but we also show that IPIV allows to draw
informative inference even after removing contentious dates. In particular, we show that
Romer and Romer (1989)’s results on the real effects of monetary policy are robust to the
Hoover and Perez (1994) critique.

Second, we address external validity concerns regarding the use of historical data and
major wars to infer the size of the spending multiplier (Gorodnichenko, 2014). The post-1952
sample excludes historical data and major wars and thus corresponds more closely to the
multiplier of a contemporaneous peace-time US economy. With IPIV, we find that the Ramey
and Zubairy (2018) shock proxy series over 1952-2015 does contain enough information to
draw informative inference on the size of the government spending multiplier, with a 5-year
cumulative multiplier between 0.6 and 1.7 at the 95 percent confidence level.

Our paper relates to two strands of literature. First, earlier work aimed at combining
narrative identification with more efficient time series models is presented in Ludvigson,
Ma and Ng (2017) and Antolín-Díaz and Rubio-Ramírez (2018) who suggest restricting
the shocks identified in a structural VAR to conform with the narrative evidence. A prior
robust Bayesian version of this idea, with frequentist guarantees, is developed in Giacomini,
Kitagawa and Read (2023), see also Giacomini, Kitagawa and Read (2022) and Plagborg-
Møller (2022) for more discussion. Unlike these papers, innovation powering (i) does not
require correctly specifying an invertible SVAR model, (ii) allows the external instruments
to be contaminated with measurement error and (iii) can account for non-random selection
of the good sample, i.e., that the arrival of credible identification periods may depend, for
instance, on the size of the shocks.

Second, innovation powering can be viewed as an alternative, and more efficient, way of
handling missing instruments. While the existing narrative literature imputes zeros on dates
where the narrative is inconclusive, innovation powering instead imputes innovation-based
predictions. As such it is related to the missing data literature (e.g. Little and Rubin, 2020),
and most closely on the augmented inverse probability weighted estimators developed in
Robins, Rotnitzky and Zhao (1994, 1995) which employ a similar bias correction mechanism.
More generally, such estimators are widely used for estimating treatment effects in the causal
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inference literature (e.g. Imbens and Rubin, 2015). We instead work in an aggregate macro
time series setting where instruments are often weak, so that we combine ideas from the
missing data literature with time series prediction routines and weak identification robust
methods (e.g. Andrews, Stock and Sun, 2019). Further, in our setting the instrumental
variable is missing and not the explanatory or outcome variable, see also Chaudhuri and
Guilkey (2016); Abrevaya and Donald (2017).

The idea of performing a bias correction after imputing missing data (i.e. Robins, Rot-
nitzky and Zhao, 1994, 1995) was recently exploited by Angelopoulos et al. (2023); An-
gelopoulos and Zrnic (2024) for settings where imputations are done by modern machine
learning methods: they dubbed their approach prediction powered inference. In our time
series setting, we instead use innovations from macro time series models for imputing missing
IVs and analogously label our method innovation powered inference.

Finally, missing values in time series analysis are often handled using state space methods
(e.g. Durbin and Koopman, 2012). This approach is also possible when treating narrative
instruments as missing: we can order the narrative instrument first in an SVAR model, cast
the SVAR model in state space form and use the Kalman filter to predict the missing values
based on past observations. However, a state space approach would require that (i) the
model is correctly specified, (ii) a model for the measurement error is specified and (iii) the
narrative events arrive at random. Our innovation powering method avoids these modeling
choices and remains closer in assumptions and spirit to the conventional IV methodology in
the narrative literature (e.g. Ramey and Zubairy, 2018).

The remainder of this paper is organized as follows. The next section presents a simple
illustrative example that highlights the main ideas. Section 3 presents the general dynamic
framework and Section 4 discusses the empirical results. Section 5 concludes.

2 Motivating example
In this section, we provide a simple static example to convey the main ideas and intuition
behind innovation powering. Consider a simple IS/MP macroeconomic model

yt = θpt + ξt (IS)
pt = ϕyt + εt (MP)

where yt is the output gap and pt is the central bank policy rate, so that the first equation
can be seen as an (IS) curve (in which case, θ < 0) and the second equation is an (MP)
curve —the central bank policy rule—. The error εt can then be seen as a monetary shock
and ξt as a shock to the natural rate of interest. We observe the variables for a sample of
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periods collected in the set N with size n = |N |.
We are interested in learning θ, the slope of the (IS) curve, or equivalently the effect

of a unit change in the policy rate on the output gap. Because ξt and pt are correlated
through the policy rule, conventional least squares cannot be used for estimation. Instead,
we will look for exogenous changes in pt, i.e., monetary shocks εt, that can be used as an
instrumental variable (IV) for pt.

The narrative identification approach

A leading (non-parametric) approach for identifying exogenous changes in pt is the narra-
tive approach.6 It consists in using narrative accounts (official records, newspaper articles,
speeches, etc..) in order to isolate exogenous movements in pt, i.e. movements in pt that are
independent of ξt. Formally, we can view the narrative identification approach as a function
f(·) that constructs a shock proxy series zt defined as

zt = f(εt, ζt) , t ∈ N , (1)

where f(εt, ζt) is a function of the shock of interest εt and some measurement error ζt, which
is independent from the structural shocks.

In its current practice, the narrative approach f(·) constructs zt as follows: (i) it con-
structs an estimate for εt on dates when the narrative account is sufficiently informative, (ii)
it sets zt to zero on all other dates, i.e., when the narrative account is inconclusive. These
two steps ensure that zt is a valid instrument for θ: E(ztpt) ̸= 0 and E(zt(yt − ptθ)) = 0, and
we can estimate θ in (IS) by using an IV estimator with instrument zt.

The narrative approach has been a major step forward for identification in macro, but it
is constrained by an important limitation: instances of clear and indisputable εt shocks are
rare. This has a number of implications.

First, the narrative records are uninformative in most cases, and most values of zt end up
being coded as zeroes. In a survey of the recent literature exploiting narrative identification,
the share of imputed zeroes is about 80 percent, sometimes even much higher, see Table 1.7

While this does not invalidate zt as an instrumental variable, this means that in practice
6While we focus on the narrative approach to construct the instrument, our innovation powering approach

applies more broadly to other “non-parametric” identification methods; for instance the focus on large shocks,
the use of discontinuities, or the use of high-frequency variation, see e.g. Nakamura and Steinsson (2018).
The key feature is that these “non-parametric” identification approaches can typically only isolate a limited
subset of exogenous events in a time series.

7Model (1) can generate the many zeros in different ways. Examples include: zt = ζtεt where ζt is a
binary measurement error series; this implies that the credible narrative dates arrive at random. Or, perhaps
more realistically, a model of the form zt = (εt + ζt)1(|εt| ≥ τ) with ζt iid measurement error and τ some
threshold. In that model, only large shocks get detected by the narrative approach, and the shocks are
measured with classical measurement error. We do not take a stand on the specific model for zt.
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researchers exploit only a small share of the variation in pt in order to infer θ. This can lead
to an efficiency problem, i.e., large error bands.

Table 1: Zero Events in Narrative Studies

Paper # obs # zeros % zeros
Bi and Zubairy (2023) 590 464 79%
Carriere-Swallow, David and Leigh (2021)† 28 22 81%
Cloyne (2013) 248 94 38%
Cloyne, Dimsdale and Postel-Vinay (2023) 89 69 77%
Fieldhouse and Mertens (2023) 292 228 78%
Guajardo, Leigh and Pescatori (2014)† 32 22 68%
Gil et al. (2019) 120 87 72%
Hamilton (1985) 140 121 86%
Jalil (2015) 90 83 92%
Ramey and Shapiro (1998) 200 197 98%
Ramey (2011) 280 194 69%
Ramey and Zubairy (2018) 504 396 79%
Romer and Romer (2023) 852 842 99%
Romer and Romer (1989) 852 845 99%
Romer and Romer (2010) 252 207 82%
Romer and Romer (2017)† 91 81 88%
Rojas, Vegh and Vuletin (2022)† 106 86 81%

Average 80%

Notes: Number and percentage of zeros across different narrative series. Here † indicates that the reported
values are per unit averages from the panel data setting considered. We omit narrative accounts reported
in books, e.g. Reinhart and Rogoff (2009) and Alesina, Favero and Giavazzi (2019), as they include several
datasets. Inspection reveals that the fractions of zeros in such texts are not different from the ones reported.

Second, with few non-zero entries, the narrative instrument zt may suffer from finite
sample confounding, i.e., an unlucky finite sample correlation between some correctly iden-
tified subset of shocks εt and other structural shocks. For instance, Hoover and Perez (1994)
argue that some of the monetary shocks of Romer and Romer (1989) coincide (by chance)
with oil shocks.

Third, even with extensive documentation, researchers engaged in narrative identifica-
tion must often use judgment calls, which has the benefit of hindsight. This could lead
to subconscious endogeneity biases, see for instance the critique of the Friedman-Schwartz
dates in Romer and Romer (1989) and the discussion in Romer and Romer (2023).

Together, low power and endogeneity biases can compound each other: a researcher
willing to only entertain uncontroversial dates without possible confounders or judgment
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calls can be left with very few exogenous variations.

Good and Bad samples

To explicitly take into account the difficult nature of identification in macro time series,
we split the data into two (not necessarily consecutive) samples: a good sample G in which
a researcher possesses a valid instrument, for instance a set of dates where the narrative
identification is deemed credible, and a bad sample B where credible identification is missing.8

In this simple illustrative example, we treat the selection of the good sample as random,
that is the probability of credibly identifying an exogenous shock —a date in the set G—
does not depend on the state of the economy and

P (t ∈ G|yt, pt, zt) = π (2)

where π > 0 is the selection probability of being in the good sample. The assumption of
ignorable selection —i.e. a random arrival assumption— is commonly made in the narrative
SVAR literature (Antolín-Díaz and Rubio-Ramírez, 2018; Giacomini, Kitagawa and Read,
2023) and is helpful to convey the intuition in this illustrative section.9 Importantly however,
our approach can accommodate more elaborate selection models, allowing π to depend on
the state of the economy.10 This extension is worked out in full detail in the main treatment
below.

With a valid instrument zt only available on G, we can still construct a consistent IV esti-
mator for θ. In fact, with the ignorable selection assumption this is simply the conventional
IV estimator based on the periods G alone, i.e.

θ̂iv =
ĈovG(yt, zt)

ĈovG(pt, zt)
, (3)

where ĈovG(a, b) denotes the sample covariance between a and b computed over G.
The low power of the narrative approach can be clearly seen from (3): with only a few

credible exogenous dates, the sample G used to estimate the sample covariances is small, and
so the variance of θ̂iv is high.

8We have that G ∪ B = N , G ∩ B = ∅, nG = |G| and nB = |B|.
9The wording “ignorable selection” is adopted from Wooldridge (2010), see the discussion in Section 19.8.

10For instance it is plausible that large shocks are easier to detect, or that monetary shocks may be easier
to identify when inflation is at a high level (e.g., Romer and Romer, 1989). In each case π depends on pt, yt.
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Powering IV: from G to N

In this paper, we propose a method to improve the efficiency of the narrative approach,
and more generally of non-parametric identification methods. Our starting point is a simple
add-and-subtract operation that lets us rewrite the IV estimator as

θ̂iv =
ĈovG(yt, pt) + ĈovG(yt, zt − pt)

ĈovG(pt, zt)
, (4)

where we added and subtracted pt in the numerator. In (4), note how the numerator of the
IV estimator is the sum of two covariance terms: (i) the reduced-form covariance Cov(yt, pt),
which by itself leads to a biased estimate of θ, and (ii) the term Cov(yt, zt − pt), which can
be seen as a bias correction term.

Expression (4) highlights the first key insight of this paper: under the ignorable selection
assumption, we have ĈovN (yt, pt) − ĈovG(yt, pt)

p→ 0 as n → ∞. This means that it is
possible to use the full sample N instead of G to estimate the reduced-form covariance
Ĉov(yt, pt) and thereby reduce the variance of this term.11 We will refer to this substitution
as N -powering and define

θ̂iv,N =
ĈovN (yt, pt) + ĈovG(yt, zt − pt)

ĈovG(pt, zt)
. (5)

While changing ĈovG(yt, pt) to ĈovN (yt, pt) can seem minor, this simple substitution can lead
to large variance reductions when the sample size of G is small relative to the full sample
size (i.e., nG/n is small), which is precisely the case in macro. Indeed, by switching from
G to N , the reduction in the variance of Ĉov(yt, pt) will be in the order of nG/n, and with
nG/n ≈ 0.2 in macro samples (Table 1), this represents an 80 percent (five-fold) reduction
in variance.

The assumption of random selection of the G sample —i.e. ignorable selection (2)— is
key for N -powering. Intuitively, under ignorable selection, the sample G (i.e., the set of dates
where the instrument is credible) is randomly drawn from the full sample N , and covariances
computed over the good sample G and over the full sample N will be asymptotically equal.

11Formally, let st = 1 if t ∈ G and st = 0 else. We have (assuming demeaned variables for simplicity)

ĈovN (yt, pt)− ĈovG(yt, pt) =
1

n

∑
t∈N

ytpt −
n

nG

1

n

∑
t∈N

stytpt
p→ E(ytpt)− E(stytpt)/π

as n → ∞ with nG/n → π. Convergence follows from a standard law of large numbers provided that
(yt, pt, st) satisfy regularity conditions. Subsequently the random arrival assumption implies that P (st =
1|yt, pt, zt) = E(st|yt, pt, zt) = π and we have E(ytpt) − E(stytpt)/π = E(ytpt) − E(E(st|yt, pt, zt)ytpt)/π =
E(ytpt)− E(ytpt)π/π = 0.
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A good example of random shock detection would be a case where the timing of the identified
shock is driven by factors independent of the current economic outlook, for instance from
international geopolitical considerations (as in the case of war shocks). Ignorable selection
will not hold however if large shocks are more likely to be detected. In that case, the
covariances between macro variables will be different in the selected sample than in the full
sample; simply because the G sample now features a bigger share of large shocks. In that
case, the solution consists in re-weighting the observations to make the G-sample as-good-
as-randomly selected conditional on controls: this is the role of inverse probability weighting
(e.g., Wooldridge, 2010, Chapter 19), and we will incorporate this generalization in the main
treatment.

With all that said, note that N -powering leaves the second term —the bias correction
term— unaffected, so that the overall variance reduction in θ̂iv will depend on the relative
contribution of the bias correction term to the variance of θ̂iv. By scaling pt appropriately,
we can minimize the bias-correction term and thereby amplify the effect of N -powering. For
that reason, our N -powered estimator will be of the form

θ̂ip =
ĈovN (yt, γpt) + ĈovG(yt, zt − γpt)

ĈovG(pt, zt)
, (6)

where γ is chosen to minimize the asymptotic variance of θ̂ip. In fact, with an appropriate
rescaling of pt, we will see that we can guarantee that N -powering delivers asymptotic
efficiency gains.

Powering IV with innovations

To maximize the gains from N -powering, there is a better choice than using pt in the add-
and-subtract rewriting of the IV estimator. Instead of rewriting the IV estimator with the
variable pt, one can use a variable vt that is (i) available every period just like pt (so as
to allow for N -powering), and (ii) has less residual endogeneity than pt, i.e., has a higher
correlation with the shock we want to identify, here the monetary shock. This is the second
key insight of this paper: the use of time series innovations to improve the efficiency of valid
(but sparse) instrumental variables.

Our general Innovation-Powered IV (IPIV) estimator is then

θ̂ip =
ĈovN (yt, γvt) + ĈovG(yt, zt − γvt)

ĈovG(pt, zt)
. (7)

While vt can a priori be any variable available over the whole N sample, a good candidate for
vt is a variable that has as little residual endogeneity as possible, i.e., that has the highest
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share of its variance coming from the shock of interest (εt). To see that, note that the
variance cost of the bias correction step —the variance coming from the second term in
(7)— depends on the difference zt − γvt.12 The larger the correlation between vt and εt, the
larger the correlation between vt and zt (since zt proxies for εt), and thus the more effective
is γ at lowering the variance of the bias correction term. When this is the case, the relative
contribution of ĈovG(yt, zt−γvt) to the overall variance of θ̂ip is smaller, and N -powering —a
reduction in the variance of Ĉov(yt, γvt), the first term in (7)— will yield a larger reduction
in the total variance of θ̂ip.

For these reasons, a prime candidate for vt is a time series innovation to pt, i.e., the
residual from a time series regression that soaked up most of (but not necessarily all of) the
confounding factors, here ξt. Prominent candidates for such innovations are Sims (1980) or
Romer and Romer (2004) in the context of monetary policy. More generally, there exists a
large literature on parametric identification (e.g., Ramey, 2016) that can be used to construct
suitable innovations.

Figure 1: Variance reduction from Innovation Powering
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Corr(yt, pt) = 0.5.

Figure 1 illustrates the additional variance reduction obtained by using vt —innovations
to pt— instead of pt, showing the percentage variance reduction in θ̂ip as a function of the

12This can be seen from the asymptotic variance of θ̂ip: Var(θ̂ip) =
limn→∞ E(ĈovN (ξt,γpt)+ĈovG(ξt,zt−γpt))

2

Cov(pt,zt)2
.
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correlation between the innovation vt and the monetary shock εt. Starting from a baseline
improvement of 20 percent when using pt directly, we can see increasing variance reductions
as we use innovations with lower residual endogeneity (i.e., higher correlation with εt). When
the innovation has no residual endogeneity left —the parametric identification scheme is valid
and Corr(vt, εt) = 1—, we obtain a 5-fold reduction in variance when π = 0.2. Intuitively, the
smaller the amount of residual endogeneity, the closer is the innovation to being a valid IV,
and thus the more innovation powering allows to approach the efficiency of an IV available
over the full sample.

To summarize, the variance reduction from IPIV comes from three key features: (i) N -
powering, which leverages a mild (and testable) ignorable selection assumption to exploit
a much larger sample size than permitted by credible macro instruments, (ii) a weighting
parameter γ, which maximizes the efficiency gains from N -powering, and (iii) the use of time
series innovations —plausible (but possibly endogenous) candidates for structural shocks—
to further amplify the gains from N -powering. Quantitatively, the efficiency gains are espe-
cially promising for two reasons specific to macro: (a) credible identification is hard in the
time series so that the good sample G is typically small relative to the full sample (nG/n

small) and (b) a large macro-econometric literature has devised plausible time series identifi-
cation schemes to construct good candidate innovations, i.e., innovations with little residual
endogeneity.

Last, we note that innovation powering only helps with the numerator of the IV estimator.
The denominator in (7) is unaffected by innovation powering, which means that IV strength
is not affected by innovation powering. ĈovG(pt, zt) appears in the denominator of (7), which
means that identification strength of θ is only determined by the narrative instrument —
innovation powering reduces variance but does not solve the weak instrument problem—, and
the main treatment will rely on weak instrument robust methods for conducting inference.

3 General framework
We now present our innovation powering methodology in the context of a general stationary
macro environment where we are interested in estimating a dynamic causal effect using a
narrative shock proxy as instrument, or more generally using a credible but sparse instru-
ment. Relative to the illustrative example, we (i) formalize inference for a class of innovation
powered IV estimators with general selection processes for the G sample, (ii) develop weak
instrument robust confidence bands, and (iii) provide a specification test for checking the
(conditional) ignorable selection assumption underlying N -powering.
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3.1 Model and assumptions

The object of interest is the dynamic causal effect θh ∈ Θ ⊂ R defined in the linear model

yt+h = θhpt + β
′
hxt + ξt+h , for t ∈ N , (8)

where yt+h is the h period ahead outcome variable, pt is the explanatory variable of interest,
with θh capturing its causal effect, and xt denotes a vector of pre-determined control variables
whose effect is captured by βh. Typically, xt includes a constant and some lags of other
observable variables.13

For exposition purposes we start by projecting out the control variables to obtain

y⊥t+h = θhp
⊥
t + ξ⊥t+h , for t ∈ N , (9)

where l⊥t+j = lt+j − Proj(lt+j|xt) for l = y, p, ξ, z and j = 0, 1, 2, . . ., with Proj(a|b) denoting
the linear projection of a on b. Throughout the paper, we will treat the orthogonalized
variables as observed, noting that no changes occur when replacing the population projection
by its empirical counterpart.

Narrative identification

Our identification approach is based on the existence of a narrative series zt, which proxies
for a structural shock of interest. In our simple example, the shock of interest was a monetary
shock, but the shock could be an oil shock, a fiscal shock, a TFP shock, among many others
(see e.g., Ramey, 2016).14 More generally, we think of the narrative identification approach
as constructing a proxy for exogenous changes in a variable of interest.

We impose the following exogeneity assumption

Assumption 1 (IV moment condition). E(z⊥t (y⊥t+h − θhp
⊥
t )) = 0.

Assumption 1 imposes that z⊥t —the narrative series after projecting out controls— is
uncorrelated with the error term. This is the conventional starting point for existing narrative
studies (e.g. Ramey and Zubairy, 2018).

Different from previous work, we will only use the instrument z⊥t on a selection of “good”
dates defined by the set G ⊂ N . The disjoint set B includes the bad dates where the

13Equation (8) can be derived from an underlying structural vector moving average model (e.g. Stock and
Watson, 2018), but such additional structure is not necessary. In fact, in the supplementary material we
show that several interesting underlying structural models satisfy (8) and the other assumptions that we
impose in this section.

14We adopt Ramey (2016)’s definition of structural shocks: structural disturbances in a simultaneous
equation system. Structural shocks are (i) exogenous with respect to the other current and lagged endogenous
variables in the model; (ii) uncorrelated with other exogenous shocks; and (iii) represent either unanticipated
movements in exogenous variables or news about future movements in exogenous variables.
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instrument zt is unknown or non-credible and thus treated as missing.15 We denote by st an
indicator variable capturing dates when the instrument is credible, i.e.,

st =

{
1 if t ∈ G = {t ∈ N : z⊥t credible}
0 if t ∈ B

. (10)

Unlike in the simple example, we now allow the arrival of credible dates for zt to depend
on the state of the economy.16 To formalize this let qt contain the unique elements of
(y⊥t+h, p

⊥
t ,vt), where vt are the innovations that we formally introduce below.

Assumption 2 (Conditional ignorable selection). We have that qt is observed on every N
period and

P (st = 1|qt, z
⊥
t ) = P (st = 1|qt) ≡ π(qt) , (11)

for all qt and
π(qt) = κ(qt; δ) > 0 , (12)

where κ is differentiable with respect to parameters δ ∈ ∆ ⊂ Rdδ .

Assumption 2 is a (conditional) ignorable selection assumption: the probability of cred-
ibly identifying a shock —of selecting a date in the G sample— can depend on the state
of the economy, but once we account for the relevant macro variables (i.e., qt), the instru-
ment z⊥t has no effect on the selection of G. This assumption is conceptually similar as in
other studies that rely on inverse probability weighting (Robins, Rotnitzky and Zhao, 1994;
Hirano, Imbens and Ridder, 2003; Wooldridge, 2007).

To illustrate what this assumption rules out we note that a narrative instrument z⊥t can
be decomposed into two parts: (i) a component that depends on the shock of interest and
(ii) a component that depends on additional measurement error (see equation (1)). Since p⊥t ,
which is included in qt, depends on the shock of interest (by construction), the only part of
z⊥t that is not accounted for by qt is the measurement error. As such, by ruling out that the
instrument z⊥t determines the selection of G, we are ruling out that the measurement error
in the narrative instrument determines selection. This is a mild assumption, which allows,
for example, selection to be determined by the size of the shock.

Assumption 2 will ensure that N -powering is possible. Intuitively, if selection is ignorable
(conditional on covariates), then a similar bias correction step as in section 2 is possible as
(inverse-probability weighted) covariances computed on the G sample will be asymptotically

15Since our method will only exploit the instrument zt in the good sample G, whether or not the moment
condition (1) holds on the bad sample B is irrelevant for practical purposes.

16We treat st as a random variable in the main text. In the appendix, we consider the case where st is
deterministic. This happens, for instance, when shock proxies are only observed on a sub-period because of
data availability, as in the case with high-frequency monetary surprises (Gertler and Karadi, 2015).
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equal to covariances computed on the N sample.
The second part of Assumption 2 posits a parametric model (with parameters δ) for

the selection probabilities. A common modeling choice would be to take κ(qt; δ) as a logit
or probit model. In principle, non-parametric methods can also be adopted for estimating
π(qt). However, for most macro studies the sample size is prohibitively small and parametric
models are typically adopted (e.g. Hamilton and Jordà, 2002; Angrist, Jordà and Kuersteiner,
2018).

Time series innovations

We now discuss the innovations vt ∈ Rdv and their construction.
In general, we require that the innovations are available on all time periods and that they

are good predictors for the structural shock of interest, but they do not need to be orthogonal
to ξ⊥t+h. While constructing vt is inherently an application specific task, there is a general
route that follows naturally from a large macro literature on the parametric identification
of structural shocks. While we will not take these identifying schemes as necessarily valid,
they will serve as great candidates for innovations.

Indeed, to maximize the gains from N -powering, the innovation vt should be as close
as possible to the structural shock of interest; the shock that z⊥t is proxying for. Since
structural shocks can be thought of as structural disturbances in a simultaneous equation
system, innovations in structural time series model are natural candidates for vt. The time
series models could be fully fledged DSGE models, structural VARs or local projections
(among others). In this general treatment, we will not discuss all possible options but
consider the general case where the innovations are the residuals from a linear projection, or

vt = (v1t, . . . , vdvt)
′ , with vit ∈ {ws

t+h − Proj(ws
t+h|xs

t), h = 0, 1, . . . , H} , (13)

where H is some positive integer and xs
t includes a set of control variables. Specification

(13) includes recursive identification, identification through controls (e.g., Romer and Romer,
2004), or long-run restrictions, see Plagborg-Møller and Wolf (2021).

In addition, note that (13) allows for the use of future variables to help better predict
the shock of interest, as would be the case when shocks are recoverable from past and future
data (e.g. Chahrour and Jurado, 2022). The collection in (13) comprises a large class of
macro models that can be used to obtain innovations, but we stress that other methods for
constructing innovations could easily be incorporated.

16



3.2 Innovation powered inference

We now discuss inference for θh using innovation powering and the estimation of the nuisance
parameters δ, the parameters of the selection model. In contrast to the simple example we
cast this task within the framework of the generalized method of moments (Hansen, 1982),
allowing us to exploit general results from this literature for establishing formal asymptotic
guarantees for our method. We first introduce the moment conditions that underlie our
methodology, and then discuss the construction of IPIV estimates and weak instrument
robust confidence bands.

Moment conditions underlying innovation powering

The moment conditions underlying the estimation of θh and δ are summarized in the follow-
ing lemma.

Lemma 1. Given Assumptions 1,2 for any γ ∈ Rdv we have that

Eg(dt, θh, δ;γ) = 0 ,

g(dt, θh, δ;γ) = z⊥t (y
⊥
t+h − θhp

⊥
t )st/κ(qt; δ) + γ

′vt(y
⊥
t+h − θhp

⊥
t )(1− st/κ(qt; δ)) (14)

Em(qt, δ) = 0 ,

m(qt, δ) = κ
(1)(qt; δ)(st − κ(qt; δ))/(κ(qt; δ)(1− κ(qt; δ))) , (15)

where κ(1)(qt; δ) = ∂κ(qt; δ)/∂δ.

The proof is provided in the appendix.
Lemma 1 contains two moment conditions. The first condition is the Innovation Powering

(IP) moment condition (14). Its first term is similar to an IV moment condition based on the
valid instrument z⊥t except that z⊥t is only credibly observed on periods where st = 1; hence
the scaling by st/κ(qt; δ) which accounts for selection of G. The second term is also similar
to an IV moment condition except that the innovation vt is used as instrument. Since the
innovation is not a valid instrument, a naive IV moment condition based on vt would yield a
biased estimate. To correct for the bias, we add-and-subtract that same moment condition
on the full sample N and on the good sample G: this is the role of the term (1−st/κ(qt; δ)).
Under the selection assumption 2 these two moments are equal and will cancel out, leaving
the IV moment condition for z⊥t for identification.

The efficiency gains from IPIV can be readily seen from a moment combination perspec-
tive. Indeed, (14) can be viewed as a linear combination of two types of moment conditions

E(z⊥t (y⊥t+h−θhp
⊥
t )st/κ(qt; δ)) = 0 and E(vt(y

⊥
t+h−θhp

⊥
t )(1−st/κ(qt; δ))) = 0 , (16)
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Compared to a conventional IV estimator, which only exploits the first moment condition
involving z⊥t , IPIV also exploits the moment conditions involving the innovations vt: this
is the innovation powering part. If z⊥t is correlated with vt, then these additional moment
conditions are non-redundant (in the sense of Breusch et al. (1999)) and incorporating them
will reduce the asymptotic variance of the conventional IV estimator (Breusch et al., 1999).17

The moments weighting vector γ allows to place more or less weight on these additional
moment conditions in order to maximize the gains from N -powering. We will come back to
the optimal γ shortly.

The other moment condition (15) in Lemma 1 corresponds to the first order conditions
for the sample selection model, a binary response model (e.g. Wooldridge, 2010, Chapter
15). Depending on the choice for κ these can correspond to the first order conditions of
a logit model, or other binary response models. As such, estimation and inference for the
selection model of Assumption 2 is standard.

Innovation powered IV estimators

For the parameters of the selection model we define the estimate δ̂ as the solution to the
sample moments

1

n

∑
t∈N

m(dπ
t , δ̂) = 0 . (17)

Using δ̂, we can estimate θh by solving18

1

n

∑
t∈N

g(dt, θ̂h(γ), δ̂;γ) = 0 ,

which has an analytical solution

θ̂h(γ) =

∑
t∈N z⊥t y

⊥
t+hst/κ(d

π
t ; δ̂) + γ

′vty
⊥
t+h(1− st/κ(d

π
t ; δ̂))∑

t∈N z⊥t p
⊥
t st/κ(d

π
t ; δ̂) + γ

′vtp⊥t (1− st/κ(dπ
t ; δ̂))

. (18)

The innovation powered instrumental variable (IPIV) estimator is defined for any vector
γ ∈ Rdv . The intuition is the same as in the simple example. With γ = 0 we recover the
baseline IV estimate, while a nonzero γ puts weight on the innovation-based moments in

17It is worth noting that we could also treat E(z⊥t (y⊥t+h−θhp
⊥
t )st/π) = 0 and E(vt(y

⊥
t+h−θhp

⊥
t )(1−st/π)) =

0 as dv + 1 separate moment conditions within a conventional generalized method of moments framework.
However, since the gradient of the innovation based moment conditions with respect to θh is always zero
there is no further advantage of separating the moments over choosing γ optimally.

18The δ̂ parameters can be of independent interest as they allow to asses the plausibility of the random
arrival assumption that underlies the usage of narrative evidence in SVAR models (e.g. Antolín-Díaz and
Rubio-Ramírez, 2018). Indeed, positive predictive ability for any of the slope parameters of the binary
response model implies that the random arrival assumption is violated.
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order reduce the variance of θ̂h. We derive the optimal γ∗ by minimizing the asymptotic
variance of θ̂h(γ) and maximizing the power of the weak identification robust tests defined
below. The details for this derivation are reported in the appendix where we define γ̂(θ̂h)
(see equation (28)) as the estimate for the efficient weights γ∗.

With the efficient weights in hand we can obtain the two-step efficient IPIV estimate
using (18), i.e. θ̂2steph ≡ θ̂h(γ̂(θ̂h)), where θ̂h is any initial IPIV estimate. Also, similar as for
any GMM estimator we can iterate between updating the estimate for the causal effect, i.e.
θ̂h(γ̂), and the estimate for the weights, i.e. γ̂(θ̂h), until convergence leading to an iterated
IPIV estimator, i.e. θ̂iterh , see Hansen and Lee (2021) for a recent analysis. Alternatively, we
can parameterize the weights in terms of θh and consider the continuous updating estimator:

1

n

∑
t∈N

g(dt, θ̂
cue
h , δ̂; γ̂(θ̂cueh )) = 0 , (19)

see Hansen, Heaton and Yaron (1996). Note that by parametrizing the weights the sample
moment condition becomes nonlinear and numerical methods need to used to find θ̂cueh .
The two-step, iterated and continuous updating estimators all have the same asymptotic
properties, but in finite sample the continuous updating estimator performs most reliably
and we recommend using this estimator.

Innovation powered weak identification robust confidence bands

Since narrative shock proxies are often weak instruments, we will construct weak instrument
robust confidence bands by inverting tests for

H0 : θh = θ̄h against H1 : θh ̸= θ̄h , (20)

for some constant θ̄h. Our preferred test statistic is an innovation powered version of the
Anderson and Rubin (1949) statistic which was further developed for GMM by Stock and
Wright (2000), see also Andrews and Guggenberger (2019).

The Innovation Powered Anderson-Rubin (IPAR) test statistic is given by

ARIP(θ̄h) =
1√
n

∑
t∈N

g(dt, θ̄h; γ̂(θ̄h))/
√

ω̂(θ̄h, γ̂(θ̄h)) , (21)

where γ̂(θ̄h) is the efficient weight evaluated at θ̄h and ω̂(θ̄h, γ̂(θ̄h)) is the estimate for the
long run variance of 1√

n

∑
t∈N g(dt, θ̄h; γ̂(θ̄h)). The exact expression is provided in equation

(29) in the appendix.
The IPAR test statistic (21) can be interpreted as the rescaled innovation powered sam-

ple moments — evaluated under the null at θ̄h — standardized by the standard deviation
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estimate. The benefit of this test statistic is that its limiting distribution is the same regard-
less of the strength of the narrative instruments, while remaining able to distinguish between
H0 and H1. In other words, it can inform which parameters θh are plausible. Formally we
have the following result.

Theorem 1. Given Assumptions 1-2 and Assumption R (stated in the appendix) we have
that under H0

lim
n→∞

P (|ARIP(θ̄h)| > zα/2) = α

where zα denotes the 1-α quantile of the standard normal distribution.

The theorem shows that the null rejection probability is equal to the nominal level of the
test α when we reject the null using critical values from the standard normal distribution.
This result can then be used to define the following confidence set for θh.

CSIP
h = {θh ∈ Θ : ARIP(θ̄h) ≤ zα/2} . (22)

In practice, we compute CSIP
h by searching over the parameter space Θ and collecting all

values for which the IPAR test statistic takes values below zα/2.

Checking bias cancellation

A necessary condition for the consistency of IPIV is that the innovation powering part
of the moment condition (14) is equal to zero, i.e. that the bias from using innovations
as instruments drops out with the add-and-subtract operation. Formally, Assumption 2
imposes that for any θ̃h ∈ Θ we must have

E(vt(y
⊥
t+h − θhpt)(1− st/κ(qt; δ))) = 0 .

A sufficient condition is that the correlations between the innovations and the macro variables
y and p are the same whether we use the sample G or the sample B after correcting for
selection. To evaluate this assumption we consider verifying the moment conditions

E(vtkt(1− st/κ(qt; δ))) = 0 with kt ∈ {y⊥t+h, p
⊥
t } . (23)

We can test these moment conditions by adding them to moment condition (15) in Lemma
1 and computing Hansen (1982) J test for over-identification. If we reject the null this
implies that there is a structural difference in the innovation-macro correlations between G
and B after correction for selection and innovation powering most likely does not provide
consistent estimates. Similar balance checks are often conducted when using matching for
causal inference (e.g. Imbens and Rubin, 2015).
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3.3 Summary of simulation study

We summarize the results from a simulation study that we conducted to evaluate the gains
in efficiency from innovation powering. A detailed account of the study is given in the
supplementary material. We simulated data from the static model of section 2 and various
SVAR models calibrated to the empirical studies considered below. For each we considered
multiple specifications: varying selection probabilities, instrument strengths and innovation
strengths. The following three findings are most important.

1. For the vast majority of designs the length of the innovation powered AR confidence
set is smaller when compared to the standard AR confidence set. Pending on the
strength of the correlation between the narrative instrument and the innovations the
relative improvement in confidence set length can be as large as 80%. Notably, this is
observed for realistically calibrated models such as the empirical SVAR designs where
prediction errors are used as innovations.

2. The size of the innovation powered AR test remains good as long as there are suffi-
ciently many informative narrative periods. A concrete recommendation is to use in-
novation powering only when nG ≥ 50, as the effective convergence rate of our method
remains √

nG which needs to be sufficiently large for the asymptotic approximation to
be accurate.

3. The IPIV point estimates are also generally more accurate when compared to their
conventional IV counterparts. The differences in mean squared errors are often large
mimicking the reductions in the IPAR confidence bands.

4 Empirical studies
In this section we revisit two landmark narrative studies: Romer and Romer (1989, 2023) on
the effect of monetary policy and Ramey and Zubairy (2018) on the size of the government
spending multiplier. In doing so, we will highlight the two limitations of the narrative
approach —low power and finite sample confounding—, and show that innovation powering
can substantially boost power, allowing us to draw robust results on the effects of monetary
and fiscal policy.

4.1 The effects of monetary policy

In this first application, we revisit the seminal work of Romer and Romer (1989, 2023),
henceforth RR, on the effects of monetary policy. To identify the effect of monetary policy
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actions Romer and Romer (1989) used the “Record of Policy Actions of the Federal Open
Market Committee” (now commonly called “Minutes”) to identify dates when the FOMC
changed its policy rate for reasons unrelated to the state of the business cycle. Specifically,
RR identify dates when the economy was roughly at potential, but the FOMC chose to adjust
money growth or interest rates in order to affect the long-run level of inflation. The study
was revisited and updated in Romer and Romer (2023) using the more detailed “Transcripts
of FOMC meetings”, resulting in a series zt with eleven monetary events —ten ones and one
minus one— over 1947-2023. The top panel of Figure 2 plots the narrative monetary dates.

Figure 2: narrative shocks and time series innovations, Monetary policy
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Top panel: the blue line depicts the monetary shocks (MP shocks, zt) identified by Romer and Romer (1989,
2023). The orange squares mark dates with oil shocks (Oil shocks) identified by Hamilton (1983, 2003). The
shaded bars (“confounding”) depict times when a Romer-Romer monetary shock is within two quarters of
an oil shock. Bottom panel: the blue line depicts the same MP shocks, the green line depicts the innovation
(vt) to the fed funds rate obtained similarly to Sims (1980), and the grey bars mark the G sample.

Following Stock and Watson (2018), we will use zt as an instrumental variable for the fed
funds rate. Treating zt as an IV allows to quantify the effects of monetary policy in units of
changes in the policy rate, i.e., to measure the effect of a unit change in the policy rate on
economic variables —a key object of interest for policy makers (e.g., Barnichon and Mesters,
2023)—.19

19Using zt as an IV also allows for measurement error in zt, which is attractive when the narrative series
is a binary variable or an index —the narrative records being not precise enough to measure exactly the size
of the monetary intervention. That said, if the objective is solely to test the classical dichotomy hypothesis
—whether money can have real effects—, it is sufficient to use zt as a right-hand side variable in an OLS
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We estimate the local projection (8), that is

yt+h = θhpt + β
′
hxt + ξt+h , for t ∈ N ,

with CPI inflation or unemployment as the dependent variable yt+h, pt is the fed funds rate
and the controls xt include a constant and twelve lags of pt and yt. Our monthly data
sample spans 1954M7-2019M12 as we exclude the COVID period. Since the fed funds rate is
only available after 1954M7, we do not include Romer and Romer’s October 1947 monetary
event.20

Low power and confounding

Figure 3 plots the estimated effects of a unit increase in the fed funds rate on unemployment
and inflation, along with the 95 percent confidence bands, first assuming that the narrative
monetary shocks are strong IVs, and then constructing weak-IV robust AR confidence bands
following Andrews, Stock and Sun (2019). While the strong-IV bands can give the impression
of relatively tight error-bands, the IV is in fact weak and the weak-IV robust bands are
much larger,21 meaning that the effects of monetary policy are not estimated very precisely.
Intuitively, this is a result of the low power of the narrative approach: the approach uses
here only 9 exogenous events to infer the effects of monetary policy, i.e., a small share of the
total variation in the policy rate.

In addition, the low power can be compounded by finite sample confounding. As argued
by Hoover and Perez (1994): four RR monetary events coincide (by chance) with oil shocks
(Hamilton, 1983, 2003), see Figure 2 (orange squares), making it difficult to establish whether
the estimated effect of monetary policy is in fact capturing the effect of oil shocks. Ideally, one
would discard these controversial monetary events (highlighted by shaded bands in Figure
2), but this worsens the low power problem, so that the error bands become completely
uninformative; with lengths excluding 20 percentage points of inflation or unemployment, see
Figure 3 (bottom row). This application illustrates the difficult trade-off between credibility
and efficiency in a time series context.

Innovation powering

Innovation powering can improve the power–credibility trade-off, and we will illustrate this
point by using time series monetary innovations from Sims (1980)’s identification scheme.

regression. This was the route followed by Romer and Romer (1989).
20Using instead the 3-months treasury bill with a sample 1945-2019 as in Romer and Romer (2023) gives

similar results.
21The effective F -statistic of Olea and Pflueger (2013) is only 6.23, a case of weak instruments.
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Figure 3: Effects of Monetary Policy, standard IV
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Notes: The panels show the regular IV point estimates for unemployment and inflation along with 95%
confidence bands computed under: a conventional normal approximation valid under a strong instrument
assumption (top panel), the AR confidence bands (middle panel) and excluding oil dates (bottom panel).

Specifically, implementing the IPIV method requires two inputs: (i) deciding which ob-
servations in the narrative series zt are useful for identification, i.e., deciding on the samples
G and B and on the accompanying selection model, and (ii) finding a good candidate for the
innovations vt.

First, we set the “good” sample G to include all RR monetary events (+1 or −1) as well
as months when there was no FOMC meeting (scheduled or unscheduled) to set zt to 0. All
other observations are placed in B. This gives us nG = 156 good periods and nB = 593,
which implies that 79% of values of zt are effectively treated as missing. In the baseline
specification, we treat the entries of G as arriving as random, i.e., π(qt) = π. Robustness
checks to alternative selection models are presented in the appendix.

Second, as innovations we use the standard “recursive identification scheme” of Sims
(1980), i.e., we use the residual of a regression of the policy rate pt on contemporaneous and
lags of inflation and unemployment, as well as lags of the policy rate. Importantly, recall
that our approach does not require this “recursive identification scheme” to be correct; it
only needs to correlate with monetary shocks. The correlation between innovations and RR
shocks on the good sample G is 0.40. Finally, we do not reject the null of bias cancellation
between the monetary innovation (vt) and the fed funds rate pt, unemployment or inflation
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(yt+h) with p-values above 0.3 for the specification test based on (23).22

Figure 4: Effects of Monetary Policy, Innovation-Powered IV
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Notes: The top row shows the IPIV point estimate (θ̂cueh , thick black line) for unemployment and inflation,
together with the innovation-powered AR bands (IPAR, CSIPh ) at 95% confidence levels. The bottom row
reports the difference in the lengths of the 95% bands for the regular IV estimator (“AR bands”) and the
Innovation-Powered IV estimator (“IPAR bands” CSIPh based on the ARIP(θ̄h) statistic)

Figure 4 shows that IPIV delivers large reductions in confidence bands. The top row
shows our innovation-powered IV estimates with 95 percent Innovation-Powered AR (IPAR)
confidence bands along with the AR bands for conventional IV (dashed lines); the left panels
shows the results for inflation and the right panels shows the results for unemployment. The
bottom row, plots the percentage differences in the length of the confidence sets. IPIV
reduces the length of the confidence sets by about 40-50 percent.

Armed with these large power gains, we can reconsider the Hoover-Perez critique and
estimate the effects of monetary policy without the controversial oil/monetary dates, i.e.,
treating the four contentious dates as missing. Figure 5 plots the results. Innovation-

22In the appendix, we consider an alternative candidate for the innovations vt: the Romer and Romer
(2004) monetary shocks, henceforth RR04. RR04 estimate a time series model of the fed funds rate (a policy
rule), where they use internal forecast from the Fed Board staff to control for the Fed’s information set, a
more credible identification strategy than Sims (1980)’s original approach. As a side comment, we note that
the comparison between RR89 and RR04 is a great illustration of the power-credibility trade-off in time
series macro. On the one hand, RR89 is a very credible approach to isolate exogenous changes in the policy
rate, but the method can only isolate a few episodes: credibility is very high but power is lower. On the
other hand, RR04 identify monetary innovations at every single dates but some of these innovations may
not be entirely exogenous: power is high but credibility is lower. See the Appendix for more discussion.
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Figure 5: Effects of Monetary Policy, Innovation-powered IV excl. Oil dates
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Notes: Impulse responses of unemployment and inflation to a unit increase in the fed funds rate. The
shaded area denote the 95 percent confidence sets without innovation power (AR bands, top panel) and with
innovation powering (IPAR bands, bottom panel).

powering leads to large reductions in the length of the confidence sets, and we are able to
obtain significant point estimates for the effects of monetary policy after 20 to 30 quarters,
making the Romer and Romer (2023) evidence robust to the Hoover-Perez critique.

4.2 The government spending multiplier

In the second application, we revisit the landmark work of Ramey and Zubairy (2018), who
use information from periodicals to narratively identify news shocks to defense expenditures
over 1890-2015.

This study is a major step forward in the measurement of the government spending mul-
tiplier, but one recurrent question has been that of external validity; to what extent can we
consider that the multiplier estimates are representative of the multiplier of a contempora-
neous peace-time US economy? First, the use of long historical sample can mix different
policy regimes, economies with very different underlying structure (e.g., from an industry-
dominated economy to service-dominated one), as well as secular changes in the size and
composition of government spending, see the discussion of Gorodnichenko (2014). Second,
in the specific case of the Ramey-Zubairy (RZ) shocks, a few large war events —World War
I, World War II, Korean war— are dominating the sample (see Figure 6), and these shocks
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could tilt estimates towards the multiplier of a war-time economy.

Figure 6: narrative shocks and time series innovations, Fiscal policy
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square) depicts other major shocks: monetary (“MP”), financial (“Fin”) and oil (“Oil”). The red bars depict
the large Ramey-Zubairy shocks that are within two quarters of another shock. Bottom panel: the blue line
depicts the same G shocks, the green line depicts the innovation (vt) to spending, and the grey bars mark
the G sample.

Lower power and confounding

To address these issues of external validity, one would ideally estimate the multiplier from
post-1952 data alone, as the post-1952 sample excludes the major war episodes and as such
may be more representative of a peace-time modern economy. Figure 7a presents the result
from such an exercise, running the same regression as Ramey and Zubairy (2018), i.e., local
projections (8) of cumulative spending on cumulative gdp growth:

h∑
j=0

νt+j︸ ︷︷ ︸
=yt+h

= θh

h∑
j=0

gt+j︸ ︷︷ ︸
pt

+β′
hxt + ξt+h

27



using the RZ shock proxy as instrument for pt.
Unfortunately, the shorter 1952-2015 sample leaves the multiplier estimates very impre-

cise with the 95 percent confidence bands ranging from -1.5 to 2 at a 5 year horizon (Figure
7a).

Figure 7: Government spending multiplier: IV estimates
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(a) Multiplier uncertainty
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Notes: Government spending multiplier IV estimates based on RZ shock proxy over 1952-2015. Left panel:
point estimate (thick black line) with the 67 and 95 percent AR confidence sets (shaded bands). Right panel:
Each grey line reports the estimated multiplier after setting one (and only one) of the non-zero RZ shocks to
zero, and the colored lines depict three of these estimates with the corresponding date of the zeroed shock.

In addition, and compounding this low power problem, finite sample confounding may
also be an issue, the Hoover and Perez (1994) critique again: note how three relatively large
defense spending shocks overlap with other structural shocks (Figure 6, middle panel): the
RZ 1980q1 shock coincides with both the Iran/Iraq war oil shock as well as the appointment
of Volcker as Fed chairman, the 1990q4 RZ shock coincides with the oil shock from the Kuwait
invasion, and the 2007q4 RZ shock coincides with the financial crisis.23 This confounding
may distort the multiplier estimates.

To assess this possibility, Figure 7b reports multiplier estimates when we leave out one
(and only one) of the non-zero RZ shocks at a time (there is a total of 68 non-zero entries).
Confirming our suspicion, the three major confounded dates —1980q1, 1990q4 and 2007q4—
are most influential for the multiplier estimate. For instance, discarding the 2007q4 positive
defense spending shock immediately raises the multiplier point estimate by a full unit, from

23In figure 6, the oil shocks are the 1956 Suez crisis, the 1973 Arab-Israel war, the 1978 Iranian revolution,
the 1980 Iran-Iraq war, the 1990 Persian Gulf war and the 2003 second Persian Gulf war (Hamilton, 1983,
2003). The monetary shocks are from Romer and Romer (1989), and the financial shocks are the BNP
Paribas shock in 2007Q3 and Lehman Brothers shock in 2008Q4.
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0.3 to 1.3.24 The other two dates have similarly large effects. As in the monetary case, an
ideal solution would thus consist in treating these confounded dates as missing, but this will
worsen the low power problem. We thus turn to innovation powering.

Figure 8: Government spending multiplier: Innovation-Powered IV
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Left panel: Government spending multiplier IPIV estimates based on RZ shock proxy over 1952-2015 with
67 and 95 percent IPAR confidence sets (“IPIV”, shaded bands) and 95 percent AR confidence sets for the
regular IV estimator (“IV”, dashed lines). Right panel: difference in the lengths of the 95% bands for the
regular IV estimator (“AR bands”) and the Innovation-Powered IV estimator (“IPAR bands” CSIPh based
on the ARIP(θ̄h) statistic).

Innovation powering

Since the RZ series proxies for news shocks to future defense spending, a good candidate for
innovation powering is a series that correlates with news shocks to defense spending. We
thus start from the one-year ahead realized change in government spending, and we project
out lags of spending and tax revenues to minimize residual endogeneity. This constitutes
our innovation vt.25 Figure 6 (bottom row) depicts the innovation series along with RZ the
shocks.

24Intuitively, the 2007q4 positive defense spending shocks coincide with the (much larger) negative financial
shock, a shock that lowered GDP substantially. Because of this confounding, the effect of government
spending on output is biased downward, leading to a large increase in the multiplier point estimate once we
treat the 2007q4 RZ shock as missing. For the same reason, the 1980q1 positive government spending shock
is confounded with the negative oil shock and the negative monetary shock, both of which bias the multiplier
estimate downward. Conversely, the negative 1990q4 spending shock is confounded with a negative oil shock,
which combined give a large fall in output, and this biases the multiplier estimate upwards.

25Alternatively, we explored using Blanchard and Perotti (2002) (BP)’s innovations lead by four quarters.
Power improvements were similar.

29



We set the “good” sample G to include all non-zero RZ dates, except for the three dates
with possible confounding that we set to missing. All other observations are set to missing.
This gives us nG = 65 good periods and nB = 191, which implies that 75% of values are
treated as missing. As selection model for π(qt), we use a linear logit model in y⊥t+h, p

⊥
t , vt,

and we cannot reject the null of bias cancellation between spending and output (pt, yt+h) or
innovations (vt) with p-values above 0.8 for the bias cancellation tests.

Figure 8 plots the multiplier estimates and confidence sets from innovation powering.
Again, IPIV delivers large reduction in confidence bands, in the order of 40-50 percent after
12 quarters. Instead of the uninformative bands (between -0.5 and 2) in Figure 7, the
multiplier at the 5 year horizon is now between 0.6 and 1.7 at 95 percent confidence, and
1 and 1.5 at 68 percent. In other words, the post-1952 Ramey-Zubairy news shocks series
does contain enough information to draw informative inference on the size of the government
spending multiplier, allowing to address both externally validity questions as well as Hoover-
Perez type critiques.

5 Conclusion
In this work, we introduced a new method —innovation-powered IV—, which allows to reduce
the confidence intervals of a credible but low power identification scheme (e.g., a narrative
instrument) by leveraging the high power of a possibly mis-specified parametric identification
assumption (e.g., a short run restriction). The method delivers large reductions in confidence
intervals for the causal effects of monetary and fiscal policy, with gains of around 40 percent
compared to state of the art narrative estimates.

Going forward, innovation powering could be used in other macro settings where narrative
instruments are used for identification, for instance for the estimation of structural macro
equation like the Phillips curve or the Euler equation (Barnichon and Mesters, 2020; Lewis
and Mertens, 2023). Further, while linearity assumptions are common when estimating
dynamic causal effects in macro, linearity is not a requirement for innovation powering
and the method can be easily modified for estimating non-linear effects, or more generally
to exploit other nonlinear moment equations (e.g. Hansen and Singleton, 1982; Gonçalves
et al., 2024).

Finally, while we mainly focused on the case where zt is taken from a narrative study,
our methodology applies equally for any instrument series that is credible but sparse, and
our approach offers a way to exploits endogenous IVs that are traditionally ignored because
invalid. Provided that these endogenous IVs are widely available, they can be used to increase
the power of exogenous but sparse IVs.
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Appendix: econometric details
In this appendix we discuss the econometric details for IPIV inference and we provide the
proofs for the results stated in the main text. Some lemmas are deferred to the supplementary
material; they are indicated by (S).

A1: Deriving the efficient weights

To derive the formal results we require a set of regularity conditions. To present these in a
compact form we define ψ = (θh, δ

′)′ with parameter space Ψ = Θ ×∆, where Θ ⊂ R and
∆ ⊂ Rdδ . The average decomposed sample moments are summarized in

hn(ψ) =
1

n

n∑
t=1

h(dt,ψ) , with h(dt,ψ) =

 z⊥t (y
⊥
t+h − θhp

⊥
t )st/κ(qt; δ)

vt(y
⊥
t+h − θhp

⊥
t )(1− st/κ(qt; δ))

m(qt, δ)

 , (24)

where dt = (qt, z
⊥
t , st). The relevant gradients are defined as

Gθ = E(∇θhg(dt, θh, δ;γ)) = −E(z⊥t p⊥t st/κ(qt; δ)) ,

Gδ(γ) = E(∇δg(dt, θh, δ;γ)) = −E
(

(z⊥t −γ′vt)(y⊥t+h−θhp
⊥
t )κ(1)(dπ

t ;δ)

κ(dπ
t ,δ)

)
,

M = E(∇δ′m(dπ
t , δ)) = −E

(
κ(1)(dπ

t ;δ)κ
(1)(dπ

t ;δ)
′

(κ(dπ
t ;δ)(1−κ(dπ

t ;δ)))

)
,

(25)

where g and m are defined in Lemma 1. Further, the IPIV estimate and selection model
estimates are given by ψ̂(γ) = (θ̂h(γ), δ̂

′)′. Finally, throughout we assume that all random
variables are defined on some underlying probability space and all considered functions of
the random variables are measurable. The required regularity conditions are as follows.

Assumption R.

1. For some r > 2 we have that {dt} is a strictly stationary process that is α-mixing of
size −r/(r − 2).

2. Ψ is compact and ψ ∈ int(Ψ).

3. We have E(|z⊥t ξ⊥t+h|r) < ∞, E(|z⊥t p⊥t |r) < ∞, E(∥vtξ
⊥
t+h∥r) < ∞ and E(∥vtp

⊥
t ∥2) < ∞

4. (i) Em(qt, δ̃) ̸= 0 for all δ̃ ̸= δ, (ii) κ(qt; δ̃) is twice continuously differentiable at
each δ̃ ∈ ∆ with probability 1, (iii) there exist constants c1, c2 such that 0 < c1 ≤
κ(qt; δ̃) ≤ c2 < 1 at each δ̃ ∈ ∆ with probability 1, (iv) E[supδ̃∈∆ ∥κ(1)(qt; δ̃)∥] <
∞, (v) let N be a neighborhood of ψ, we have E[supδ̃∈N ∥κ(1)(qt; δ̃)∥2] < ∞ and
E(supδ̃∈N ∥κ(2)(qt; δ̃)∥) < ∞, (vi) E(∥κ(1)(qt; δ)∥r) < ∞ and (vii) M is non-singular.

5. S = limn→∞ var(n1/2hn(ψ)) is positive definite with partitioning conforming h(dt;ψ):

S =

 Szz Szv Szm

Svz Svv Svm

Smz Smv Smm

 .
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Conditions 1 and 3 restrict the dependence and the moments of the process {dt} in such
a way that a central limit theorem applies to suitable rescaled averages and functions of the
process. Condition 2 imposes that the parameter space is compact which can be relaxed
using more refined arguments. Condition 4 imposes a set of regularity conditions on the
selection model that can be verified for any specific model. Condition 5 ensures that the
long run variance of the sample moments is well behaved.

In addition, the following assumption is used to derive a standard asymptotic normal
approximation for the distribution of the IPIV estimator.

Assumption I. E(z⊥t p⊥t ) ̸= 0.

This imposes that the narrative instruments are strong: the correlation between the
instrument and the variable of interest is bounded away from zero in the limit. The evidence
for whether this assumption holds for narrative instrument series is mixed, while some studies
like Ramey and Zubairy (2018); Fieldhouse and Mertens (2023) present compelling evidence
that suggests that their narrative instruments are strong, others do not present such evidence
and our own analysis for monetary policy based on the Romer and Romer (1989, 2023)
instrument series shows that here the assumption is too strong. In our empirical work we
rely on the IPAR statistic for constructing confidence bands, which implies that we do not
require Assumption I as is reflected in the statement of Theorem 1.

Theorem 2. Given Assumptions 1-2 and Assumptions R and I we have for any γn
p→ γ

that θ̂h(γn)
p→ θh and

√
n(θ̂h(γn)− θh)

d→ N(0, V (γ)) ,

where V (γ) = ω(γ)/G2
θ with

ω(γ) = Ωgg(γ) +Gδ(γ)
′M−1ΩmmM

−1Gδ(γ)− 2Gδ(γ)
′M−1Ωmg(γ) . (26)

with Ω(γ) = U(γ)′SU(γ).

The following corollary determines the γ weights that minimize ω(γ) and the asymptotic
variance of the IPIV estimator θ̂h(γn).

Corollary 1. Given Assumptions 1-2 and Assumption R the optimal weights that minimize
ω(γ) and (under additionally assumption I) the asymptotic variance V (γ) are given by

γ∗ =− (Svv +G′
δvM

−1ΩmmM
−1Gδv − 2G′

δvM
−1Smv)

−1

× (Svz +G′
δvM

−1ΩmmM
−1Gδz − 2G′

δvM
−1Smz) , (27)

where

Gδz = −E(z⊥t (y⊥t+h − θhp
⊥
t )κ

(1)(dπ
t ; δ)/κ(d

π
t , δ)) ,

G′
δv = E(vt(y

⊥
t+h − θhp

⊥
t )κ

(1)(dπ
t ; δ)

′/κ(dπ
t , δ)) .

Importantly, if the strong instruments assumption does not hold γ∗ continues to minimize
ω(γ) which is the variance of the sample moment that is used to build the IPAR statistic,
see equation (21).
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Assumption R.

6. There exists an estimator Ŝ(ψ̂) such that Ŝ(ψ̂) p→ S for any ψ̂ p→ ψ.

This condition imposes that a consistent estimate for the asymptotic variance exists.
Primitive assumptions for specific estimators can be found in for example Newey and West
(1987), Andrews (1991) and de Jong and Davidson (2000). With this the efficient weights
can be consistently estimated by

γ̂(θ̂h) =− (Ŝvv(ψ̂) + Ĝδv(θ̂h)
′M̂−1Ŝmm(ψ̂)M̂

−1Ĝδv(θ̂h)− 2Ĝδv(θ̂h)
′M̂−1Ŝmv(ψ̂))

−1

× (Ŝvz(ψ̂) + Ĝδv(θ̂h)
′M̂−1Ŝmm(ψ̂)M̂

−1Ĝδz(θ̂h)− 2Ĝδv(θ̂h)
′M̂−1Ŝmz(ψ̂)) , (28)

where ψ̂ = (θ̂h, δ̂
′)′ is an arbitrary consistent estimator,

Ĝδz(θ̂h) = − 1

n

∑
t∈N

stz
⊥
t (y

⊥
t+h − θ̂hp

⊥
t )κ

(1)(dπ
t ; δ̂)/κ

2(dπ
t , δ̂) ,

Ĝδv(θ̂h)
′ =

1

n

∑
t∈N

stvt(y
⊥
t+h − θ̂hp

⊥
t )κ

(1)(dπ
t ; δ̂)

′/κ2(dπ
t , δ̂) ,

M̂ = − 1

n

∑
t∈N

κ(1)(dπ
t ; δ̂)κ

(1)(dπ
t ; δ̂)

′/(κ(dπ
t ; δ̂)(1− κ(dπ

t ; δ̂)))

and note that Ŝ(ψ̂) partitions conforming S.

Corollary 2. Given Assumptions 1-2 and Assumption R, we have for any ψ̂ p→ ψ that

γ̂(θ̂h)
p→ γ∗ ,

where γ̂ is defined in (28) and γ∗ in Corollary 1.

The estimated weights are used to compute the IPAR statistic in equation (21). We
note that the consistent estimation of these weights does not require the strong instruments
assumption I.

A2: Variance IPAR statistic

For the IPAR statistic (21) the variance estimate is given by

ω̂(θh,γ) = Ω̂gg(θh,γ) + Ĝδ(θh,γ)
′M̂−1Ω̂mmM̂

−1Ĝδ(θh,γ)− 2Ĝδ(θh,γ)
′M̂−1Ω̂mg(θh,γ) ,

(29)
with Ĝδ(θh,γ) = Ĝδz(θh) + Ĝδv(θh)γ and Ω̂(θh,γ) = U(γ)′Ŝ(θh, δ)U(γ) with

U(γ)′ =

(
1 γ ′ 0
0 0 Idδ

)
and partitioning Ω̂(γ) =

(
Ω̂gg(γ) Ω̂gm(γ)

Ω̂mg(γ) Ω̂mm

)
.

To compute the IPAR statistic we evaluate ω̂(θh,γ) at θ̄h, γ̂(θ̄h) and δ̂.
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A3: Proofs

Proof of Lemma 1. Assumption 1 states E(z⊥t (y⊥t+h − θhp
⊥
t )) = 0. The law of iterative ex-

pectations together with Assumption 2 implies

E(z⊥t (y⊥t+h − θhp
⊥
t )st/κ(qt, δ)) = E(z⊥t (y⊥t+h − θhp

⊥
t )E(st|qt, z

⊥
t )/κ(qt, δ))

= E(z⊥t (y⊥t+h − θhp
⊥
t )E(st|qt)/κ(qt, δ))

= E(z⊥t (y⊥t+h − θhp
⊥
t )κ(qt, δ)/κ(qt, δ))

= E(z⊥t (y⊥t+h − θhp
⊥
t )) = 0 .

To obtain the expression in the Lemma we add and subtract γ ′E(vt(y
⊥
t+h−θhp

⊥
t )) while noth-

ing that under Assumption 2 we have γ ′E(vt(y
⊥
t+h−θhp

⊥
t )) = γ

′E(vt(y
⊥
t+h−θhp

⊥
t )st/κ(qt, δ)),

which again follows from the law of iterative expectations. We get

E(z⊥t (y⊥t+h − θhp
⊥
t )st/κ(qt, δ)) + γ

′E(vt(y
⊥
t+h − θhp

⊥
t )(1− st/κ(qt, δ)) = 0 ,

which is equal to Eg(dt, θh, δ;γ) = 0. Next, the expression for m(qt; δ) in (15) follows from
Wooldridge (2010, equation (15.18)) and by Assumption 2 this corresponds to the first order
conditions of a correctly specified model such that Em(qt; δ) = 0.

Proof of Theorem 2. Note that

ψ̂(γn) = argmin
ψ̃∈Ψ

hn(ψ̃)
′Wnhn(ψ̃) where Wn =

 1 γ ′
n 0

γn γnγ
′
n 0

0 0 Idv

 , (30)

and Wn is positive semi-definite. This clarifies that the IPIV estimator can be written as
a GMM estimator. To show consistency Lemma S1 uses the stated assumptions to verify
the conditions of Theorem 2.1 in Newey and McFadden (1994), which imply ψ̂(γn)

p→ ψ

and thus θ̂h(γn)
p→ θh. Next, to derive the limiting distribution we compute the first order

condition of (30) and rearrange to obtain
√
n(ψ̂(γn)−ψ) = −(Hn(ψ̂(γn))

′WnHn(ψ̄))
−1Hn(ψ̂(γn))

′Wn

√
nhn(ψ) ,

where ψ̄ lies on the line segment between ψ̂(γn) and ψ,

Hn(ψ) =
1

n

n∑
t=1

H(dt,ψ) and H(dt,ψ) =
∂h(dt,ψ)

∂ψ′ ,

with exact expressions given in Lemma S2-(iv) which shows that EH(dt, ψ̃) is continuous
in ψ̃ and supψ̃∈N ∥Hn(ψ̃) − EH(dt; ψ̃)∥

p→ 0 for some neighborhood N of ψ. This, to-
gether with the consistency of ψ̂(γn), is sufficient to ensure that Hn(ψ̂(γn))

p→ H and
Hn(ψ̄)

p→ H. Further, as Wn
p→ W we have −(Hn(ψ̂(γn))

′WnHn(ψ̄))
−1Hn(ψ̂(γn))

′Wn
p→

−(H′WH)−1H′W. Lemma S3 shows that
√
nhn(ψ)

d→ N(0,S), such that Slutsky’s lemma
allows to conclude

√
n(ψ̂(γ̃n)−ψ)

d→ N(0, (H′WH)−1H′WSWH(H′WH)−1) .
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Finally, we show that the top left entry of the asymptotic variance corresponds to the
expression in the theorem. We have that

(H′WH)−1 =

(
G−2

θ +G−1
θ G′

δM
−2GδG

−1
θ −G−1

θ G′
δM

−2

−M−2GδG
−1
θ M−2

)
Also, using W = U(γ)U(γ)′ we have

U(γ)′SU(γ) =

(
Szz + γ̃

′Svz + Szvγ̃ + γ̃ ′Svvγ̃ Szm + γ̃ ′Svm

Smz + Smvγ̃ Smm

)
≡
(

Ωgg(γ̃) Ωgm(γ̃)
Ωmg(γ̃) Ωmm

)
,

Putting everything together shows that the top left element is equal to

Ωgg(γ̃) +G′
δM

−1ΩmmM
−1Gδ − 2G′

δM
−1Ωmg

G2
θ

.

Proof of Corollary 1. In terms of the partitioning of S we can write Ωgg = Szz + 2Szvγ +
γ ′Svvγ, Ωmg = Smz + Smvγ and Gδ(γ) = Gδz + Gδvγ, where Gδz and Gδv are defined in
the corollary. The variance matrix V (γ) = ω(γ)/G2

θ only depends on γ via ω. We solve
minγ ω(γ) to find the minimum. Using the notation above we have

ω(γ) =Szz + 2Szvγ + γ ′Svvγ + (Gδz +Gδvγ)
′M−1ΩmmM

−1(Gδz +Gδvγ)

− 2(Gδz +Gδvγ)
′M−1(Smz + Smvγ) ,

which shows that ω(γ) is quadratic in γ. Taking the derivative and setting it to zero gives
γ∗ as stated in the Corollary.

Proof of Corollary 2. Given ψ̂ p→ ψ the convergence follows directly from the continuous
mapping theorem using Lemma S2-(i)-(iii) and Assumption R-6.

Proof of Theorem 1. Under H0 : θh = θ̄h, the numerator of the IPAR statistic satisfies

1√
n

∑
t∈N

g(dt, θh; γ̂(θh)) = (1, γ̂(θh)
′)
√
nhn(ψ)

d→ (1,γ ′)×N(0,S) = N(0, ω(γ)) ,

which follows from Slutsky’s lemma using Lemma S3 and Corollary 2. Further, under H0,
the denominator satisfies

ω̂(θh, γ̂) = (1, γ̂ ′)Ŝ(θh, δ̂)(1, γ̂(θh)
′)′

p→ (1,γ ′)S(1,γ ′)′ = ω(γ) ,

which follows from Assumption R-6 and Corollary 2 applied with ψ̂ = (θ̄h, δ̂
′)′ which is

consistent under H0 and Lemma S1. Combining the results using Slutky’s lemma implies
that under H0 we have ARIP(θ̄h) = ARIP(θh)

d→ N(0, 1).
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