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Throughout this document, references to lemmas, equations etc. which start with a “S” are

references to this document. Those which consist of just a number refer to the main text.

S1 Supporting Lemmas

Lemma S1. Given Assumptions 1-2 and Assumption R we have that

δ̂
p→ δ ,

and if Assumption I also holds we have for any γn
p→ γ that

ψ̂(γn)
p→ ψ .

Proof. For both claims we verify the conditions of Theorem 2.1 in Newey and McFadden

(1994). Starting with part 1. Assumption R-1 ensures that the ergodic theorem implies that
1
n

∑n
t=1 m(qt; δ̃)

p→ Em(dt, δ̃). Since by Assumption R-4-(i) this expectation is only zero at

δ, ∥Em(dt, δ̃)∥2 is uniquely minimized at δ. By R-2 the parameter space ∆ is compact. By

R-4-(ii) m(dt, δ̃) is continuous with respect to δ̃. Further,

E

(
sup
δ̃∈∆

∥m(qt; δ̃)∥

)
≤ E

(
sup
δ̃∈∆

∥κ(1)(qt; δ̃)∥

)
(1 + c2)/(c1(1− c2)) < ∞ . (S1)

which follows from R-4-(iii),(iv). Combining the previous two statements Lemma 2.4 in

Newey and McFadden (1994) allows us to conclude that Em(dt, δ̃) is continuous and uniform

convergence holds supδ̃∈∆ ∥ 1
n

∑n
t=1m(qt; δ̃)− Em(dt, δ̃)∥

p→ 0. This implies that

sup
δ̃∈∆

| 1
n

n∑
t=1

∥m(dt, δ̃)∥2 − ∥Em(dt, δ̃)∥2|
p→ 0 ,

and since δ̂ = argminδ̃∈∆
1
n

∑n
t=1 ∥m(dt, δ̃)∥2 we may apply Newey and McFadden (1994,

Theorem 2.1) to conclude δ̂
p→ δ.

Next for part 2. Assumption R-1 ensures that the ergodic theorem implies that hn(ψ̃)
p→

Eh(dt, ψ̃). Further, γn
p→ γ implies that Wn

p→ W where

Wn =

 1 γ ′
n 0

γn γnγ
′
n 0

0 0 Idv

 and W =

 1 γ ′ 0

γ γγ ′ 0

0 0 Idv

 ,

which are positive semi-definite. From Lemma 2.3 in Newey and McFadden (1994) it fol-
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lows that if (a) Eh(dt,ψ) = 0 and (b) WEh(dt, ψ̃) ̸= 0 for all ψ̃ ̸= ψ, then Q(ψ̃) =

Eh(dt, ψ̃)
′WEh(dt, ψ̃) has a unique minimum at ψ.

For (a) note that by the law of iterated expectations

Eh(dt,ψ) = E


z⊥t ξ

⊥
t+hE(st|qt, z

⊥
t )/κ(qt; δ)

vtξ
⊥
t+h(1− E(st|qt, z

⊥
t )/κ(qt; δ))

κ(1)(qt;δ)(E(st|qt,z⊥t )−κ(qt;δ))

κ(qt;δ)(1−κ(qt;δ))

 = 0 , (S2)

where the second equality follows as E(st|qt, z
⊥
t ) = E(st|qt) = κ(qt; δ) by Assumption 2,

making the second and third entries zero. Further, by Assumption 1 we have E(z⊥t ξ⊥t+h) = 0

ensuring that the first entry is also zero.

For (b) note that this is implied when Eg(dt, ψ̃;γ) ̸= 0 and Em(qt; δ̃) ̸= 0 for ψ̃ ̸= ψ,

where g and m are defined in (14) and (15). Assumption R-4-(i) imposes Em(qt, δ̃) ̸= 0 for

δ̃ ̸= δ, which can be verified for any preferred binary response model. Hence, for Eg(dt, ψ̃,γ)

we only need to consider the case where δ̃ = δ, i.e.

Eg(dt, θ̃h, δ;γ) =E(z⊥t ξ̃⊥t+hst/κ(qt; δ)) + γ
′E(vtξ̃

⊥
t+h(1− st/κ(qt; δ)))

=E(z⊥t ξ̃⊥t+hE(st|qt, z
⊥
t )/κ(qt; δ)) + γ

′E(vtξ̃
⊥
t+h(1− E(st|qt)/κ(qt; δ)))

=E(z⊥t ξ̃⊥t+h) ,

where ξ̃⊥t+h = y⊥t+h−θ̃hp
⊥
t = ξ⊥t+h+(θh−θ̃h)p

⊥
t and E(z⊥t ξ̃⊥t+h) = E(z⊥t ξ⊥t+h)+(θh−θ̃h)E(z⊥t p⊥t ) =

(θh − θ̃h)E(z⊥t p⊥t ) ̸= 0 unless θh = θ̃h, which follows from Assumptions 1 and I. We conclude

that the limiting objective function Q(ψ̃) is uniquely minimized at ψ.

Next, the parameter space for ψ is compact by Assumption R-2. Finally, to verify that

Q(ψ̃) is continuous with respect to ψ̃ and that supψ̃∈Ψ |hn(ψ̃)
′Wnhn(ψ̃) − Q(ψ̃)| p→ 0 we

first check the conditions of Lemma 2.4 in Newey and McFadden (1994)S1 to verify that

Eh(dt, ψ̃) is continuous with respect to ψ̃ and supψ̃∈Ψ |hn(ψ̃)− Eh(dt, ψ̃)|
p→ 0.

First, h(dt, ψ̃) is continuous at each ψ̃ ∈ Ψ with probability one. This follows as the

functions z⊥t (y
⊥
t+h − θhp

⊥
t )st/κ(qt; δ) and vt(y

⊥
t+h − θhp

⊥
t )(1 − st/κ(qt; δ)) are continuous in

any θ̃h ∈ Θ (linear) and in any δ̃ ∈ ∆ as κ is continuous by R-4-(ii). The function m(qt, δ̃)

is continuous at each δ̃ ∈ ∆ as it is a continuous function of κ and κ(1) which are both

continuous by R-4-(ii).

S1Note that their lemma applies after replacing the iid assumption for the data with Assumption R-1.
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Second, we verify the dominance condition E(supψ̃∈Ψ ∥h(dt, ψ̃)∥) < ∞. Note that

E

(
sup
ψ̃∈Ψ

∥h(dt, ψ̃)∥

)
≤E

(
sup
ψ̃∈Ψ

|z⊥t (y⊥t+h − θ̃hp
⊥
t )st/κ(qt; δ̃)|

)

+ E

(
sup
ψ̃∈Ψ

∥vt(y
⊥
t+h − θ̃hp

⊥
t )(1− st/κ(qt; δ̃))∥

)

+ E

(
sup
δ̃∈∆

∥m(qt; δ̃)∥

)

Using Assumption R-4-(iii) the first term can be bounded as follows

E

(
sup
ψ̃∈Ψ

|z⊥t (y⊥t+h − θ̃hp
⊥
t )st/κ(qt; δ̃)|

)
≤ c−1

1 E

(
sup
θ̃h∈Θ

|z⊥t (y⊥t+h − θ̃hp
⊥
t )|

)
≤ c−1

1 (E|z⊥t ξ⊥t+h|+ sup
θ̃h∈Θ

|θ̃h − θh|E|z⊥t p⊥t |) < ∞ (S3)

where the last inequality follows from R-2 and R-3. Similarly, for the second term

E

(
sup
ψ̃∈Ψ

∥vt(y
⊥
t+h − θ̃hp

⊥
t )(1− st/κ(qt; δ̃))∥

)
≤ (1 + c−1

1 )E

(
sup
θ̃h∈Θ

∥vt(y
⊥
t+h − θ̃hp

⊥
t )∥

)
≤ (1 + c−1

1 )(E∥vtξ
⊥
t+h∥+ sup

θ̃h∈Θ
|θ̃h − θh|E∥vtp

⊥
t ∥) < ∞ . (S4)

Finally, the last term follows from (S1).

This completes the verification of the conditions of Lemma 2.4. We use these to conclude

that Q(ψ̃) is continuous with respect to ψ̃ and since

|hn(ψ̃)
′Wnhn(ψ̃)−Q(ψ̃)| ≤ ∥hn(ψ̃)− Eh(dt, ψ̃)∥2∥Wn∥

+ 2∥Eh(dt, ψ̃)∥∥hn(ψ̃)− Eh(dt, ψ̃)∥∥Wn∥∥Eh(dt, ψ̃)∥2∥Wn −W∥

the uniform convergence of hn(ψ̃)−Eh(dt, ψ̃), the dominance condition and Wn −W
p→ 0

imply the uniform convergence of the objective function.

This completes the verification of the conditions of Theorem 2.1 in Newey and McFadden

(1994) and we may conclude that ψ̂(γn)
p→ ψ which implies δ̂

p→ δ and θ̂h(γn)
p→ θh.

Lemma S2. Given Assumptions 1-2 and Assumption R, we have that

(i) supψ̃∈N ∥Ĝδz(ψ̃)− EĜδz(ψ̃)∥
p→ 0 and EĜδz(ψ̃) is continuous in ψ̃.

(ii) supψ̃∈N ∥Ĝδv(ψ̃)− EĜδv(ψ̃)∥
p→ 0 and EĜδv(ψ̃) is continuous in ψ̃.
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(iii) supψ̃∈N ∥M̂(ψ̃)− EM̂(ψ̃)∥ p→ 0 and EM̂(ψ̃) is continuous in ψ̃.

(iv) supψ̃∈N ∥Hn(ψ̃)− EH(dt,ψ)∥
p→ 0 and EH(dt,ψ) is continuous in ψ̃.

where N is some neighborhood of ψ and

Ĝδz(ψ̃) = − 1

n

∑
t∈N

stz
⊥
t (y

⊥
t+h − θ̃hp

⊥
t )κ

(1)(dπ
t ; δ̃)/κ

2(dπ
t , δ̃) ,

Ĝδv(ψ̃)
′ =

1

n

∑
t∈N

stvt(y
⊥
t+h − θ̃hp

⊥
t )κ

(1)(dπ
t ; δ̃)

′/κ2(dπ
t , δ̃) ,

M̂(ψ̃) = − 1

n

∑
t∈N

κ(1)(dπ
t ; δ̃)κ

(1)(dπ
t ; δ̃)

′/(κ(dπ
t ; δ̃)(1− κ(dπ

t ; δ̃)))

Hn(ψ) =
1

n

n∑
t=1

H(dt,ψ)

with H(dt,ψ) =
∂h(dt,ψ)

∂ψ′ ,

H(dt,ψ) =

 −z⊥t p
⊥
t st/κ(qt; δ) −z⊥t (y

⊥
t+h − θhp

⊥
t )stκ

(1)(qt; δ)
′/κ2(qt; δ)

−vtp
⊥
t (1− st/κ(qt; δ)) vt(y

⊥
t+h − θhp

⊥
t )stκ

(1)(qt; δ)
′/κ2(qt; δ)

0 ∂m(qt, δ)/∂δ
′


and

∂m(qt, δ)/∂δ
′ =κ(2)(qt, δ)(st − κ(qt, δ))/(κ(qt, δ)(1− κ(qt, δ)))

− κ(1)(qt, δ)κ
(1)(qt, δ)

′(1− 2κ(qt, δ))(st − κ(qt, δ))/(κ(qt, δ)(1− κ(qt, δ)))
2

− κ(1)(qt, δ)κ
(1)(qt, δ)

′/(κ(qt, δ)(1− κ(qt, δ))) .

Proof. To prove (i)-(iv) we repeatedly apply Lemma 2.4 from Newey and McFadden (1994)

which requires checking that the argument of the sum is continuous with respect to ψ̃ and

that the argument is dominated in expectation. Part (i). Note that by Assumption R-1:

EĜδz(ψ̃) = −Estz⊥t (y⊥t+h − θ̃hp
⊥
t )κ

(1)(dπ
t ; δ̃)/κ

2(dπ
t , δ̃) ,

and stz
⊥
t (y

⊥
t+h − θ̃hp

⊥
t )κ

(1)(dπ
t ; δ̃)/κ

2(dπ
t , δ̃) is continuous with respect to δ̃ on ∆ by R-4-(ii).

Also,

E

(
sup
ψ̃∈N

∥z⊥t (y⊥t+h − θ̃hp
⊥
t )stκ

(1)(qt; δ̃)
′/κ2(qt; δ̃)∥

)
≤

c−2
1 E(sup

δ̃∈N
∥κ(1)(qt; δ̃)∥2)1/2 × E( sup

θ̃h∈N
(|z⊥t ξ⊥t+h|+ |θ̃h − θh||z⊥t p⊥t |)2)1/2 < ∞ (S5)
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by R-2,3,4-(iii,v). Part (ii). We have

EĜδv(ψ̃)
′ = Estvt(y

⊥
t+h − θ̃hp

⊥
t )κ

(1)(dπ
t ; δ̃)

′/κ2(dπ
t , δ̃) .

Continuity follows from the same argument as above and

E

(
sup
ψ̃∈N

∥vt(y
⊥
t+h − θ̃hp

⊥
t )stκ

(1)(qt; δ̃)
′/κ2(qt; δ̃)∥

)
≤

c−2
1 E(sup

δ̃∈N
∥κ(1)(qt; δ̃)∥2)1/2 × E( sup

θ̃h∈N
(∥vtξ

⊥
t+h∥+ |θ̃h − θh|∥vtp

⊥
t ∥)2)1/2 < ∞ (S6)

by R-2,3,4-(iii,v). Part (iii). We have

EM̂(ψ̃) = Eκ(1)(dπ
t ; δ̃)κ

(1)(dπ
t ; δ̃)

′/(κ(dπ
t ; δ̃)(1− κ(dπ

t ; δ̃)))

and

E

(
sup
ψ̃∈N

∥κ(1)(dπ
t ; δ̃)κ

(1)(dπ
t ; δ̃)

′/(κ(dπ
t ; δ̃)(1− κ(dπ

t ; δ̃)))∥

)
≤

E

(
sup
δ̃∈N

∥κ(1)(qt; δ̃)∥2
)
/(c1(1− c2)) < ∞ (S7)

by R-4-(iii,v). Finally, for part (iv) note that H(dt,ψ) is dominated in expectation if its

sub-blocks are dominated. The top and middle right blocks are dominated by (S5) and (S6).

For the remaining terms we have

E

(
sup
ψ̃∈N

|z⊥t p⊥t st/κ(qt; δ̃)|

)
≤ c−1

1 E(|z⊥t p⊥t |) < ∞ (S8)

E

(
sup
ψ̃∈N

∥vtp
⊥
t (1− st/κ(qt; δ̃))∥

)
≤ (1 + c−1

1 )E(∥vtp
⊥
t ∥) < ∞ (S9)

E

(
sup
ψ̃∈N

∥∇δ̃′m(qt, δ̃)∥

)
≤ E

(
sup
δ̃∈N

∥κ(2)(qt; δ̃)∥

)
(1 + c2)/(c1(1− c2))

+ E

(
sup
δ̃∈N

∥κ(1)(qt; δ̃)∥2
)
(2 + 3c2 + 2c22)(c1(1− c2))

−1 < ∞ (S10)

where we used R-2,3,4-(ii),(iii),(v). The continuity of H(dt,ψ) follows from R-4-(ii) and

conventional arguments. This allows to apply Lemma 2.4 of Newey and McFadden (1994)

to conclude that (iv) holds.
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Lemma S3. Given Assumptions 1-2 and R we have that

√
nhn(ψ)

d→ N(0,S) .

Proof. Consider any λ ∈ Rdim(h) with λ′λ. Under assumption R-1 have that λ′h(dt,ψ) is

stationary by White (2000, Theorem 3.35) and α-mixing of size −r/(r − 2) White (2000,

Theorem 3.49). Also, by (S2), E(λ′h(dt,ψ)) = 0. Consider the moment condition

E|λ′h(dt,ψ)|2+υ ≤ E|λ1z
⊥
t ξ

⊥
t+hst/k(qt; δ)|2+υ + E|λ′

2vtξ
⊥
t+h(1− st/k(qt; δ))|2+υ

+ E|λ′
3κ

(1)(qt; δ)(st − κ(qt; δ))/(κ(qt; δ)(1− κ(qt; δ)))|2+υ

≤ |λ1|2+υc−2−υ
1 E|z⊥t ξ⊥t+h|2+υ + (1 + c−2−υ

1 )∥λ2∥2+υE∥vtξ
⊥
t+h∥2+υ

+ E∥κ(1)(qt; δ)∥2+υ∥λ3∥2+υ(1 + c2)
2+υ(c1(1− c2))

−2−υ < ∞ ,

by Assumptions R-3,4-(iii),(vi). Also, note that by R-5 we have limn→∞ var(
√
nλ′hn(ψ)) > 0

as S is positive definite. These conditions are sufficient to apply the central limit theorem for

α-mixing processes as stated in White (2000, Theorem 5.20) to
√
nλ′hn(ψ). Subsequently

by the Cramer-Wold device (White, 2000, Proposition 2.1) we have
√
nhn(ψ)

d→ N(0,S).

S2 Deterministic selection

Recall the selection indicator

st =

{
1 if t ∈ G = {t ∈ N : z⊥t credible}
0 if t ∈ B

,

which classifies whether period t was used for identifying the causal effect of interest. In the

main text we treated st as a stationary random sequence that took on the value one with

probability π(qt). While this approach covers numerous applications there are others that

cannot be covered by this assumption, yet innovation powering can still be used.

A prominent category arises when st is a deterministic series. As a concrete example

we can think of Gertler and Karadi (2015), where the good period is post 1990 since high

frequency monetary surprises can only be computed once a fed funds futures market exist.

The period before 1990 is then the bad period. In this case st = 0 prior to 1990 and then

shifts to st = 1 for all post-1990 periods and we can treat st as a deterministic sequence.

Note that here the stationarity assumption of the main text (Assumption R-1) does not hold.

The good news is that innovation powering can be applied without much modifications.

When st is deterministic the selection assumption 2 can be replaced by the following
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assumption.

Assumption S1. The indicator {st} that defines the sample G is deterministic and

1

n

∑
t∈N

Cov(vt, kt)−
1

nG

∑
t∈G

Cov(vt, kt) → 0 as n → ∞ with nG/n → π > 0 ,

for kt ∈ {ξ⊥t+h, p
⊥
t , y

⊥
t+h}.

This assumption is clearly satisfied for stationary time series (vt, p
⊥
t , y

⊥
t+h), but it can

be also satisfied under weaker conditions.S2 The key difference with the main text is that

there, since st is random, we need to ensure that E(stvtξ
⊥
t+h) is equal to E(vtξ

⊥
t+h) which

requires an assumption on E(st|vt, p
⊥
t , y

⊥
t+h, z

⊥
t ), i.e. Assumption 2. As discussed in the main

text, a random st arises for example when the narrative accounts are more likely to detect

an informative shock when the shock is large, or, more generally, whenever detecting an

informative shock depends on the state of the economy. In the case where the sample is split

into good and bad for data availability reasons no such considerations arise and st can be

treated as deterministic.

The methodology of the main text simplifies under this assumption as no selection model

needs to be estimated and the only moment condition of interest is as follows.

Lemma S4. Given Assumptions 1 and S1 for any γ ∈ Rdv we have that

Eg(dt, θh, δ;γ) = 0 ,

g(dt, θh, δ;γ) = z⊥t (y
⊥
t+h − θhp

⊥
t )st/π + γ ′vt(y

⊥
t+h − θhp

⊥
t )(1− st/π) . (S11)

Here π replaces the selection model. Since π can be estimated by nG/n the IPIV estimator

simplifies to

θ̂h(γ) =

1
n

∑
t∈N γ

′vty
⊥
t+h +

1
nG

∑
t∈G(z

⊥
t − γ ′vt)y

⊥
t+h

1
n

∑
t∈N γ

′vtp⊥t + 1
nG

∑
t∈G(z

⊥
t − γ ′vt)p⊥t

, (S12)

which is the same estimator that one would use when P (st = 1|qt, z
⊥
t ) = π, i.e. completely

random selection as considered in the simple illustrative example of Section 2. In both cases

the selection model drops out and the frequency nG/n reweights for the fraction of good

periods.

S2Note that the stationary assumption in Assumption R is only imposed for convenience in the main
text — it is not a required structural assumption. E.g. alternative laws of large numbers and central limit
theorems can be applied for heterogeneous processes.
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Similarly, the IPAR statistic also simplifies to

AR∗
IP(θ̄h) =

1√
n

∑
t∈N γ̂(θ̄h)

′vt(y
⊥
t+h − θ̄hp

⊥
t ) +

√
n

nG

∑
t∈G(z

⊥
t − γ̂(θ̄h)′vt)(y

⊥
t+h − θ̄hp

⊥
t )√

(1, γ̂(θ̄h)′)Σ̂(θ̄h)(1, γ̂(θ̄h)′
,

(S13)

where Σ̂(θ̄h) is any consistent estimate for

Σ(θ̄h) = lim
n→∞

var(
√
nfn(θ̄h)) fn(θ̄h) =

1

n

n∑
t=1

f(dt, θ̄h)

with

f(dt, θ̄h) =

(
z⊥t (y

⊥
t+h − θ̄hp

⊥
t )st/π̂

vt(y
⊥
t+h − θ̄hp

⊥
t )(1− st/π̂)

)
and π̂ = nG/n. Estimators such as those proposed in Newey and West (1987), Andrews

(1991) and de Jong and Davidson (2000), can be used.

Further, the estimate for the efficient weights also simplifies to

γ̂(θ̄h) = −Σ̂vv(θ̄h)
−1Σ̂vz(θ̄h) ,

where the sub-blocks conform to the partition in f(dt, θ̄h).

Under H0 : θh = θ̄h and given Assumptions 1, S1 and regularity conditions R we continue

to have that AR∗
IP(θ̄h)

d→ N(0, 1). Also, the construction of the confidence set remains the

same.

As such for practical purposes we can now distinguish between two options:

1. st is a random sequence and Assumption 2 holds. In this case the methodology pre-

sented in the main text can be followed.

2. st is a deterministic sequence or Assumption 2 holds with π(qt) = π (i.e. complete

random selection); in case the expressions (S12) and (S13) can be used.

S3 Compatible underlying structural models

The main text did not specify an underlying structural model for pt and yt. In this section we

show that multiple different structural models are compatible with the general framework and

our methodology applies regardless which is true. Specifically, we will show that innovation

powered inference improves over standard IV regardless of whether the structural shocks of

interest actually do or do not exist on the B sample.
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Narratively undetected structural shocks

To set the stage we first take a conventional perspective and postulate that the vector of

macro variables wt = (pt, yt, w3t, . . . , wKt) follows a structural vector autoregressive model

(SVAR) model of order p.

wt =

p∑
j=1

Φjwt−j + et et ∼ iid(0,Σ) , et = Φ0ηt , t ∈ N , (S14)

where et are the reduced form shocks with variance Σ and η = (εt, η2t, . . . , ηKt)
′ is the

vector of structural shocks that has unit variance such that Σ = Φ0Φ
′
0. We are interested

in εt which is normalized to have unit effect on pt. The other shocks do not necessarily

have a structural interpretation.S3 For this underlying model we can characterize narrative

instruments similarly as in the illustrative example:

z⊥t = f(εt, ζt) =

{
εt + ζt if t ∈ G
0 if t ∈ B

,

where ζt is required to be uncorrelated with ξ⊥t+h = y⊥t+h− θhp
⊥
t and for simplicity we assume

that the variables that are projected out include exactly the p lags of the variables in the

SVAR model. We note that as long as the zeros on B are determined as a function of εt and

ζt we have that zt is an exogenous instrument and Assumption 1 holds.

In this underlying model structural shocks εt arrive every period, but the narrative does

not always record the shock. We do not need to take a stance on why this is, but a plausible

reason is that the narrative only captures large exogenous events, i.e. large values of εt, and

misses the smaller ones.

This perspective underlies the narrative SVAR literature (Ludvigson, Ma and Ng, 2017;

Antoĺın-Dı́az and Rubio-Ramı́rez, 2018; Giacomini, Kitagawa and Read, 2022), where the

identified set of structural parameters in (S14) is refined using the available information in

the narrative accounts. The narrative series of Romer and Romer (1989, 2023) is often used

as an illustration: monetary policy shocks arrive every period but the narrative accounts only

capture a few of such exogenous events. This justifies imposing an SVAR as the underlying

model — which assumes that structural shocks arrive every period — and using the narrative

to further inform the direction or magnitude of the structural shocks on specific dates.

S3We adopt an SVAR model for comparability with the existing literature. From the perspective of IP
inference this section could also be written for any structural vector (autoregressive) moving average model.
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Non-existent structural shocks

To motivate a second plausible underlying structural model, suppose that the narrative series

zt corresponds to the military defense spending news series of Ramey and Zubairy (2018).

This series is equal to zero for about 80% of periods, but the reason for why it is often zero

is quite straightforward: the US was not involved in any major war and there were simply

no surprises to military defense spending. This leaves us with two options.

First, if we postulate that εt is the shock to government spending (arriving every period)

and we assume that the components of this shock, including military defense spending,

have homogeneous effects on the macro outcomes, then the conventional SVAR model (S14)

remains appropriate. In this case we can view the narrative instrument as

z⊥t = f(εt, ζt) =

{
εkt + ζt if t ∈ G
0 if t ∈ B

,

where f() now isolates the military defense component εkt of the shock εt. Under this

assumption z⊥t remains a valid instrument (e.g. Stock and Watson, 2018), but the implicit

homogeneous effects assumption is strong.

Second, we can instead postulate that εt corresponds specifically to the shock to military

defense spending and suppose that this shock is often zero. Let sεt = 1(εt occurs) be the

indicator for whether the shock materializes and πε
t the probability that sεt = 1, which may

depend on the state of the economy. To incorporate the non-random arrival of structural

shocks we consider the extended SVAR model

wt =

p∑
j=1

Φjwt−j + et , et = sεtΦ0ηt + (1− sεt)et , t ∈ N , (S15)

where the reduced form shocks are only mapped to the structural shocks when sεt = 1,

i.e. when the structural shocks occur. We note that the model remains stationary and the

regularity conditions needed for IP inference can be verified to hold.S4

For simplicity, we impose that st = sεt which implies that the narrative is observed

S4In contrast, if (S15) is the true underlying structural model, the conventional SVAR model (S14) is mis-
specified and the narrative SVAR methods of Antoĺın-Dı́az and Rubio-Ramı́rez (2018); Giacomini, Kitagawa
and Read (2022) cannot be applied.
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whenever the structural shock occurs, and we defineS5

z⊥t = f(εt, ζt) =

{
g(εt) + ζt if t ∈ G
0 if t ∈ B

,

which implies a subtle difference in interpretation: on B there were no shocks to defense

spending and the narrative documents the correct value of zero, i.e. 0 = εt for t ∈ B. This

instrument series together with model (S15) fits in the general framework of the previous

section, and hence innovation powered narrative inference can be applied in this setting.

Invariance of Innovation Powered Inference

Next, we clarify why innovation powered inference is invariant to the underlying structural

model and we show that the gains in efficiency are the same regardless whether model (S14)

or (S15) is true. In other words, the reductions in variance are the same regardless whether

structural shocks exist on B.
For simplicity suppose that a researcher uses innovations vt = p⊥t . Model (S14) implies

– after projecting out the lags — that p⊥t = Φ1•,0ηt = Φ11,0εt +
∑K

j=2 Φ1j,0ηjt and the

innovations depend on the structural shock of interest for all time periods t ∈ N . In contrast

for model (S15) we have p⊥t = εt +
∑K

j=2 Φ1j,0ηjt only on G and p⊥t = e1t on B.
Consider the main innovation powered sample moments for horizon h = 0

1

n

∑
t∈N

z⊥t (y
⊥
t − θ0p

⊥
t )st/κ(qt; δ)︸ ︷︷ ︸

narrative part

+ γ̂︸︷︷︸
weight

1

n

∑
t∈N

p⊥t (y
⊥
t − θ0p

⊥
t )(1− st/κ(qt; δ))︸ ︷︷ ︸

innovations part

,

which determines the IPIV estimator and the IPAR test statistic.

The narrative part of the moment condition depends on εt via z⊥t and hence this part

exploits the correlation between the structural shock and the macro variables. However, this

term is only nonzero for t ∈ G, and therefore the existence of structural shocks on B does

not matter — they never contribute —.

The innovations part is non-zero for all t, but in contrast to the narrative term it does

not exploit any correlations among structural shocks and observables. Indeed, we can write

1

n

∑
t∈N

p⊥t (y
⊥
t − θ0p

⊥
t )(1− st/κ(qt; δ)) =

1

n

∑
t∈N

e1t(e2t − θ0e1t)(1− st/κ(qt; δ)) ,

S5Violation of this assumption can go two ways. First the narrative may miss certain structural shocks
(e.g. because they were small) in which case the narrative instrument will remain exogenous (similar as in
the scenario above). Second if the narrative documents a structural shock when there was none, we violate
Assumption 1 and we fall outside the scope of innovation powered inference.
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which only depends on the reduced form correlations among et. As both models have identical

reduced form shocks these correlations are identical for (S14) and (S15). The fact that

different structural shocks may have generated them is irrelevant. As long as the stationarity

assumption continues to hold and the correlations among the macro variables are not different

on G and B innovation powering will reduce the variance.

Finally, one may wonder whether the efficient weight estimate γ̂ change when structural

shocks are missing. To show that this is not the case consider the expression in equation

(28). There are two types of terms: those that depend on z⊥t and those that do not. Similar

as above the terms that depend on z⊥t are only computed on periods G, whereas the other

terms only exploit reduced form shocks which are identical across the different SVAR models.

We conclude that each of the components of the innovation powered sample moments is

invariant to whether or not structural shocks arrive on B, hence the resulting estimators and

tests are are as well.

S4 Simulation study

We discuss the details of the simulation study that we conducted to verify the finite sample

properties of the IPIV estimates and IPAR tests.

S4.1 Simulation design

We simulate data from two different models: the static simultaneous equations model that

was discussed in the illustrative example and an SVAR model calibrated to different empirical

settings considered in the literature. The first model aims to explore the performance of our

method in a stylized setting, whereas the second class of SVAR models aims to assess the

workings of our method in realistic macro examples.

Within in each model class we consider different specifications that we detail below. For

each specific simulation design we simulate M = 5000 datasets.

Linear simultaneous equations model We consider the model

yt = θpt + σξt , pt = cεt + νσξt , for t ∈ N ,

where (ξt, εt)
′ iid∼ N (0, I2). The scale σ is fixed at one, the degree of endogeneity is fixed at

ν = 1.5, instrument strength is governed by c which is varied between c = 0.5 and c = 1.0,

and θ = 1 is the parameter of interest. The narrative instrument is generated as zt = εt and

the innovations are set as

vt = ρzt + (1− ρ)ξt ,
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where ρ ∈ (0.4, 0.8) captures the relevance of the innovations. Note that all these parameter

choices interact for determining instrument strength. Therefore, for each combination of

parameters, we summarize the model by reporting the average F statistic across simulations.

The narrative instrument is observed either completely at random or as a function of the

state variables. The first case is included to explore the minimum nG requirement for which

our methodology has good finite sample properties. Specifically, to have exact control over

the number of narratives we select a fixed number of nG periods to be observed at random

from n. We consider nG = 25, 50, 100, 150 and n = 200, 500.

For the second case we model π(qt) using the logistic specification

π(qt) =
exp(q′

tδ)

1 + exp(q′
tδ)

,

and we consider two parametrizations: qt = (1, pt, yt)
′ and δ = (c, 0.2, 0, 2) — indicated by

π = 1 in the results — and qt = (1, |εt|)′ and δ = (c, 0.2)— indicated by π = 2 —. For each

specification we only consider draws for st such that 50 ≤ nG ≤ 150. To ensure this happens

on average we pick the constant c = −1 for n = 200 and c = −2 for n = 500.

Structural VARs In our second design we simulate data from an SVAR model that is

calibrated to monetary or fiscal policy data from the US. The general model is given by

wt =

p∑
j=1

Φjwt−j + A0ηt ,

where wt is a vector of macro variables that includes yt and pt, and ηt are the structural

shocks which include εt, which is the shock that generates exogenous variation in pt. We are

interested in estimating θh in model yt+h = θhpt + β
′
hxt + ut+h where xt includes a constant

and the lags of yt, pt.

The narrative instrument is generated in a dynamic way

zt = c1εt + c2εt−1 + ζt , ζt
iid∼ N (0, 1) ,

which allows for serial correlation in the instrument. The latter is important as most instru-

ment series in macro are serially correlated (Alloza, Gonzalo and Sanx, 2019). We consider

(c1, c2) = (0.9, 0.5) or (c1, c2) = (0.5, 0.2). Similar as for the simultaneous equations model

we select the observed narrative periods st = 1 either completely at random or with prob-

ability π(qt) taken as a logit with qt = (1, p⊥t , y
⊥
t+h)

′ and δ = (c, 0.2, 0, 2) — indicated by

π = 1 in the results — and qt = (1, |εt|)′ and δ = (−1, 0.2)— indicated by π = 2 —, and

c = −1 for n = 200 and c = −2 for n = 500.
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The variables and parameters are based on our empirical studies.

1. Monetary policy. We consider wt = (w1t, w2t, w3t)
′ with unemployment yt = w1t, PCE

inflation w2t and the short term interest rate pt = w3t. Using p = 12 the model is

fitted using monthly US data over the 1954M7-2016M12 period. The structural shocks

are ordered as ηt = (η1t, η2t, εt)
′, where εt is the monetary policy shock. This shock is

identified by imposing short run recursive restrictions on the impact matrix A0. The

parameters are estimated using OLS and we use these parameter to generate the data

and the define the true impulse response. The results are shown for θh corresponding

to the unemployment response at horizon h = 30.

The innovations that we consider are: (i) vt = w⊥
3t and (ii) vt = w⊥

1t, which are

the interest rate or growth rate after projecting out the lags of pt, yt. Intuitively, (i)

which uses interest rate innovations is more promising as the monetary policy shock is

typically more pronounced in these series. In contrast, (ii) uses GDP innovations and

variance decompositions show that monetary policy explains little variation in output.

Note that neither choice makes use of the lower triangular ordering in the SVAR used

for simulating the data.

2. Fiscal policy. We consider wt = (w1t, w2t, w3t) with w1t is taxes, pt = w2t is spending

and yt = w3t is gdp growth. We fit the reduced form VAR to quarterly US data from

1947Q1 until 2015Q4. We use the short run restrictions from Blanchard and Perotti

(2002) to identify the effects of spending. The innovations that we consider are: (i)

vt = w⊥
3t and (ii) vt = w⊥

1t, which are the interest rate or growth rate after projecting

out the lags of pt, yt. The results are shown for θh corresponding to the gdp growth

response at horizon h = 30.

S4.2 Evaluation criteria

We compare the accuracy of the θ̂cueh IPIV estimator and the conventional IV estimator that

is based on the instrument zt that includes the zeros. We report the root mean squared

error (RMSE) and the mean absolute error (MAE). We note that due to the relatively

weak instruments in some simulation design some outliers in the parameter estimates occur

(notably in the conventional IV estimator). This makes the comparison based on mean

squared error somewhat distorted and the results for MAE are more reliable.

Further, we evaluate the size of the IPAR and AR tests and the length of the confidence

interval based on inverting these tests. To evaluate the empirical size of the test we compare

the empirical null rejection probability (ERP) the nominal level α = 0.05. Finally, the length

of the confidence set is capped at 50 for each draw to reduce the computational time. This
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implies that for very weak IV designs we will not see much differences in the confidence set

length as both IPAR and AR are uninformative.

S4.3 Results

Linear simultaneous equations model The results for the simultaneous equations

model are shown in Tables S1 and S2, where S1 considers random selection for good pe-

riods and S2 considers G selection via the discussed logit models.

The following patterns can be detected under random selection from Table S1.

(i) The length of the confidence set based on the IPAR test is virtually always smaller on

average when compared to the length based on the AR test. The leading determinants

for the magnitude in reduction are: (i) the correlation between the innovation and the

instrument as captured by ρ — larger ρ leads to more gains — and (ii) nG/n ratio –

when nG is small relative to n the gains are larger. The strength of the instrument

as measured by the F -statistic is moderately important for the reduction: stronger

instruments lead to slightly larger improvements for IPAR, but a part of this is driven

by the maximum length of the confidence intervals being capped at 50.

For example, when n = 200, nG = 50, ρ = 0.4 and F = 7.6, the gain in confidence set

length reduction is 32%. When we increase ρ to 0.8, the gain becomes to around 80%.

In the same scenario varying nG = 25 to nG = 150 modifies the gains between 30% and

0%.

(ii) The size of the IPAR test is generally good. Only when nG = 25 we find that the

test starts over-rejecting. This is not surprising as our asymptotic approximation is

based on nG → ∞. Interestingly, when ρ increases — i.e. the innovations become more

relevant — the size distortions also disappear for nG = 25. Nonetheless, we strongly

recommend to only use the IPAR test when nG ≥ 50. In future work we aim to explore

alternative ways of approximating the distribution of IPAR.

(iii) The reductions in RMSE and MAE are very large for the IPIV continuous updating

estimator (relative to the conventional IV). This holds for virtually all specifications

considered. We note that due to the large outliers when the instruments are weak the

patterns are not always clear. Further inspection shows that the reductions all come

from the variance part of the MSE, the bias term is is virtually identical for IV and

IPIV.

Table S2 shows the results for the setting where the selection probabilities depend on the

state of the economy. The conclusions made above also hold for this design. We make the

following additional observations.
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(iv) The specification of the selection model does not affect the results much. The gains for

the case where the selection probability depends on |εt| — i.e. the size of the shock —

are generally a bit smaller when compared to the case where the logit model is defined

by observables pt, yt. Nonetheless, the reductions in confidence set length can still be

large.

Structural VARs The estimation results for the structural VAR model are shown in

Tables S3 and S4 for the monthly monetary SVAR and in Tables S5 and S6 for the quarterly

fiscal SVAR. Again, the first table corresponds to the completely ignorable selection case

where G is picked at random and the second tables correspond to the case where the logit

selection model is included.

We make the following observations.

(v) The IP gains in RMSE, MAE and CS length reduction clearly depend on the choice

of the innovation. While in the previous simulations this was tightly controlled by the

parameter ρ, here it becomes clear when we compare using p⊥t and y⊥t as innovation. In

each design the shock of interest, e.g. the monetary shock, is much more pronounced in

p⊥t and therefore using this as innovation leads to much improved results. In contrast

when we use vt = y⊥t the gains are much more modest, and in some designs we even

lose relative to conventional IV.

(vi) The size of the IPAR test is somewhat less well controlled overall — the ERP is slightly

above the nominal level. We note that this is also observed for the conventional AR

test and is most likely due to the estimation of the long run variance matrix. This is a

well known difficult problem and our choice for relying on the Newey and West (1987)

estimator can possibly be improved (e.g. Lazarus et al., 2018).

(vii) Comparing the monetary and fiscal VARs we find little differences. The gains are

somewhat larger in the quarterly VAR, which is possibly due to the reduced serial

correlation in the model.

S5 Additional empirical results

S5.1 Romer and Romer (1989) meets Romer and Romer (2004)

In this section, we revisit our empirical application on the effects of monetary policy by

considering an alternative candidate for the innovations vt: the Romer and Romer (2004)

monetary shocks, henceforth RR04. RR04 estimate a time series model of the fed funds
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rate (a policy rule), where they use internal forecasts from the Fed Board staff —the Green-

book forecasts— to control for the Fed’s information set. This provides a more credible

identification strategy than Sims (1980)’s original approach, as the Fed reacts to a lot more

information than can be included in a macro time series model. By controlling for the staff

forecasts for unemployment and inflation, RR04 can isolate movements in the policy rate

that are orthogonal to the expected paths of unemployment and inflation.

Unlike the narrative approach of Romer and Romer (1989) (henceforth RR89) however,

the Greenbook forecasts may not control for all the information that the Fed is reacting to,

such that the RR04 innovations may be contaminated by residual endogeneity. As Romer and

Romer (2004) note (p. 1066), “To the extent that policy makers employ useful information

about the paths of output and inflation beyond what is in the Greenbooks,[...], our series

could still include [some] anticipatory actions.”

The comparison between RR89 and RR04 is a great illustration of the power-credibility

in time series macro. On the one hand, RR89 is a very credible approach to isolate exogenous

changes in the policy rate, but the method can only isolate a few episodes: credibility is very

high but power is lower. On the other hand, RR04 identify monetary innovations at every

single dates but some of these innovations may not be entirely exogenous: power is high but

credibility is lower.

Figure S1 plots our IPIV estimates using RR04 as innovations. Compared to the Sims

(1980)’s type innovations, the RR04 innovations are closer to the true underlying monetary

shocks, and the correlation with RR89’s narrative shock proxy is higher (0.43 vs 0.40),

implying larger gains from innovation powering. Counterbalancing this effect, the RR04

series is shorter, covering only 1967-2007 (using Tenreyro and Thwaites (2016)’s extension)

instead of the 1954-2023 sample underlying our baseline estimates in Figure 4, implying

smaller expected efficiency gains from innovation powering.

Overall, the results are similar to those presented in the main text with substantial

reductions in confidence bands for both inflation and unemployment. The reductions are a

bit smaller for unemployment however, with reductions in the order of 20 percent at horizons

above 10 months. This is likely due to the smaller sample period covered by the RR04 series.

S5.2 Romer and Romer (1989) with selection

On possible worry for our IPIV estimate of the effects of monetary policy is that the selection

process for the Romer and Romer (1989) dates are not random. Indeed, Romer and Romer

(1989) are careful to select times when output is at potential but inflation is suddenly deemed

too high by the central bank. This indicates that the selection of RR89 dates is not random

but depends on the underlying state of the economy.
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To address this concern, we model the credible event selection probability by considering

a linear logit model in p⊥t , y
⊥
t+h with y⊥t+h the unemployment and inflation rates. Figure S2

plots the results and show similar efficiency improvements, in fact slightly larger for the

unemployment response while a bit smaller for the inflation response.
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Appendix: Tables and Figures

Figure S1: Effects of Monetary Policy, Innovation-Powered IV, RR89 meets RR04
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Top row: IPIV point estimates (θ̂cueh , thick black line) for unemployment and inflation, together with the

innovation-powered AR bands (IPAR) and regular AR bands at 95% confidence levels. Middle row: differ-

ences in the lengths of the 95% bands for the regular IV estimator (“AR bands”) and the Innovation-Powered

IV estimator (“IPAR bands”). Bottom row: Time series of the Romer and Romer (1989) shocks and Romer

and Romer (2004) innovations. The table reports the mean absolute error (MAE), Empirical Re-
jection Probability (ERP) and the width of the confidence interval (wCS) for the standard
IV estimator with AR confidence set and the innovation powered versions.
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Figure S2: Effects of Monetary Policy, Innovation-Powered IV with selection model

0 20 40 60
-5

0

5

10

15
Unemployment

AR bands

IPAR bands

0 20 40 60
Horizon

-60

-40

-20

0

%
re
d
u
ct
io
n
C
S

0 20 40 60
-20

-10

0

10
In.ation

AR bands
IPAR bands

0 20 40 60
Horizon

-80

-60

-40

-20

0

%
re
d
u
ct
io
n
C
S

Notes: The top row shows the IPIV point estimate (θ̂cueh , thick black line) for unemployment and inflation,

together with the innovation-powered AR bands (IPAR) and regular AR bands at 95% confidence levels.

The bottom row reports the difference in the lengths of the 95% bands for the regular IV estimator (“AR

bands”) and the Innovation-Powered IV estimator (“IPAR bands”)
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