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1 Introduction
How should we evaluate and compare the performance of policy institutions? How should
we evaluate and compare policy makers after their term in office? These questions are of
central importance to the good functioning of democratic and accountable institutions, but
there is little consensus on a method for evaluating and comparing performance.

A naive approach would consist in measuring performance based on realized macroeco-
nomic outcomes; on the realized value of some loss function. For instance, we could assess
a central banker based on average inflation and unemployment outcomes over her term.
Unfortunately, that approach suffers from numerous confounding problems, as many factors
are outside policy makers’ control but affect performance: (i) different policy makers may
face different initial conditions upon beginning their term, e.g. a central banker can inherit
a strong or weak economy from her predecessor, and this will influence realized outcomes,
(ii) different policy makers may face different economic disturbances, e.g., a central banker
may experience a financial crisis or an energy price shock that will affect her ability to sta-
bilize inflation and unemployment, and (iii) different policy makers may live in different
economies, e.g., a steeper or flatter Phillips curve will affect a central banker’s ability to
control inflation.

To control for the environment, one approach would be to use a structural model fitted
to data spanning the policy maker’s term. Provided that the model is well specified, the
structural model can be used to derive an optimal rule; a policy rule that delivers the
minimum loss possible given the environment. A policy maker is best performing when
she follows a rule that delivers that minimum loss, and we can rank policy makers based
on their distance to minimum loss (DML) —the distance between their realized loss and
the minimum loss possible given the environment—. Better performing policy makers will
feature smaller distances to minimum loss. A possible risk with this approach however is
one of model mis-specification: if the model is mis-specified, evaluations can be inaccurate.

In this paper, we show that it is possible to evaluate and rank policy makers with minimal
assumptions on the underlying economic model. Specifically, for a large class of linear forward
looking macro models and quadratic loss functions, it is possible to measure the DML from
well known and estimable sufficient statistics: the impulse responses (IRs) to policy and
non-policy shocks.

To measure the DML with sufficient statistics, the key difficulty is to measure the mini-
mum feasible loss; to characterize the optimal policy rule without having to rely on a specific
underlying model. We achieve this thanks to two new results. First, an identification result:
knowledge of the optimal reaction to structural shocks alone is sufficient to characterize the
optimal policy rule, that is to construct a policy rule that minimizes the loss function given
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the environment. Second, a sufficient statistics result: the effects of counterfactual reactions
to structural shocks can be computed from the IRs to policy and non-policy shocks.

Taken together, these results imply that the optimal reaction function can be character-
ized from simple regressions in “impulse response space”: regressions of the impulse responses
to non-policy shocks on the impulse responses to policy shocks. Each regression coefficient
measures by how much more or less the policy maker should have responded to a given
non-policy shock, and this optimal reaction adjustment (ORA) can be used to measure the
distance to minimum loss conditional on a specific type of non-policy shock. Overall policy
performance —the total distance to minimum loss— can then be computing by aggregating
these distances across the different shocks.

In a dynamic setting computing the total DML requires identifying all policy and non-
policy news shocks at all possible horizons. While this data requirement is unlikely to be
met in practice, we show how subset statistics, which only use a subset of all possible policy
shocks, can be used to evaluate policy makers. Intuitively, this property stems from our
characterization of the optimal rule as a set of optimal reaction coefficients to shocks. Since
each type of shock can be studied separately from the others, we can split the optimal
policy problem into separate problems, and evaluate policy makers separately for each type
of shock.

We apply our methodology to study the performance of US monetary policy over the
past 150 years and revisit many important questions regarding the conduct of monetary
policy: (i) Did the founding of the Federal Reserve in 1913 led to superior macro outcomes
than during the passive Gold standard period (e.g., Bordo and Kydland, 1995)? (ii) While
many people would agree that monetary policy was superior during the 2007-2009 financial
crisis than during the 1929-1933 financial crisis (e.g., Wheelock et al., 2010), can we confirm
and quantify this improvement? In other words, did Bernanke fulfill his promise to Milton
Friedman when he said that the Fed “won’t do it again”, i.e., won’t repeat the mistakes of
the Great Depression (Bernanke, 2002)? (iii) More generally, did monetary policy improve
since the Great Depression? Is the Great Moderation post Volcker a sign of good policy or
simply the outcome of good luck? (e.g., Clarida, Galí and Gertler, 2000; Galí and Gambetti,
2009)?

To assess and compare monetary policy performance across historical periods, we evaluate
how monetary policy responded to five types of non-policy shocks: (i) financial shocks, (ii)
government spending shocks, (iii) energy price shocks, (iv) inflation expectation shocks and
(v) productivity shocks, and we evaluate US monetary policy over four distinct periods:
(a) 1879-1912 covering the Gold standard period until the founding of the Federal Reserve,
(b) 1913-1941 covering the early Fed years to the US entering World War II, (c) 1954-
1984 covering the post World War II period until the beginning of the Great Moderation,
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and (d) 1990-2019 covering the Great Moderation period, the financial crisis and up to
the COVID crisis. In each case, we leverage on a large empirical literature on structural
shocks identification to identify banking panics (Reinhart and Rogoff, 2009), energy price
shocks (Hamilton, 2003), government spending shocks (Ramey and Zubairy, 2018), TFP
shocks (Gali, 1999), inflation expectation shocks (Leduc, Sill and Stark, 2007) and monetary
shocks (Friedman and Schwartz, 1963; Romer and Romer, 1989, 2004b; Gürkaynak, Sack
and Swanson, 2005). The identification of monetary shocks is less developed for the Gold
Standard period, and we propose a new identification strategy based on large gold mine
discoveries.

Given a loss function that places equal weight on inflation and unemployment, our main
results are as follows: (i) we estimate large and uniform improvements in the conduct of
monetary policy, but only in the last 30 years, (ii) we cannot reject that the Fed’s reaction
to recent financial shocks (notably the 2007-2008 financial crisis) was appropriate, in contrast
to the “highly” sub-optimal reaction of the Fed during the Great Depression, (iii) despite
much larger realized losses in the 1920s-1930s, the performance of the early Fed is no worse
than the performance of the passive Gold Standard, and (iv) the Fed’s reaction function
during the 1960s-1970s is almost as sub-optimal as the reaction function of the early Fed.

Related literature An early contribution is Fair (1978) who highlights the distortions
stemming from different initial conditions and economic environments. His solution was to
adopt optimal control methods to compare policy makers through the lens of a fully specified
model. Modern versions of this approach include (e.g. Galı, López-Salido and Vallés, 2003;
Gali and Gertler, 2007; Blanchard and Galí, 2007). Unfortunately, specifying the correct
model for (i) the policy rule and (ii) the macroeconomic non-policy block is a difficult task
(e.g., Svensson, 2003; Mishkin, 2010). A less structural approach has studied monetary
performance through the lens of estimated policy rules —requiring only the specification of
a policy rule—.1 In particular, a number of studies compared the Fed in the pre- and post-
Volcker periods by assessing whether the Taylor principle was satisfied. However, beyond
the Taylor principle, that approach can say little about the optimality of reaction functions,
and thus can only provide a coarse evaluation of reaction functions.

In the context of fiscal policy Blinder and Watson (2016) improve on the naive approach
of policy evaluation —measuring performance based on unconditional realized outcomes—
by projecting out specific macro shocks, i.e., by trying to control for good (or bad) luck.
In contrast, our approach projects on the space spanned by specific non-policy shocks and
study performance in that space.

1See Taylor (1999); Clarida, Galí and Gertler (2000); Orphanides (2003); Coibion and Gorodnichenko
(2011) for policy rules estimates.

4



Closer to our work, the literature has proposed reduced-form methods to study policy
rule counterfactuals (e.g., Sims and Zha, 2006; Bernanke et al., 1997; Leeper and Zha, 2003),
though these approaches are not fully robust to the Lucas critique. Instead, our approach
builds on recent work showing that robustness to the Lucas critique is possible in a large class
of macroeconomic models (McKay and Wolf, 2023): When the coefficients of the non-policy
block are independent of the coefficients of the policy block, it is possible to reproduce
any policy rule counterfactual with an appropriate combination of policy news shocks at
different horizons. Our work exploits a little studied class of policy rule counterfactuals
—counterfactual reactions to non-policy shocks—, which have appealing properties: (i) the
class is sufficient to characterize the optimal reaction function, (ii) the class allows to split
the optimal policy problem into computationally simple separate problems, allowing to eval-
uate policy makers under subset identification, and (iii) each sub-problem has an economic
interpretation; allowing to better understand the sources of sub-optimal policy decisions, for
instance the types of shocks that policy makers could have been handled better. This last
property allows us to relate to a large literature on previous policy misses.

In fact, our historical evaluation of monetary policy relates to monumental narrative
studies of monetary policy, from Friedman and Schwartz (1963) seminal work to the more
recent work of Meltzer (2009). Our study builds on this narrative evidence in that much our
shock identification draws on the narrative identification approach pioneered by Friedman
and Schwartz (1963) and Romer and Romer (1989). While our historical study is necessarily
less thorough than these historical accounts, we show that it is possible to use narrative
qualitative accounts to make objective and quantitative statements about historical policy
performance.

Last, our paper relates to the sufficient statistics approach for macro policy proposed
in Barnichon and Mesters (2023). Different from our focus on reaction function evaluation,
Barnichon and Mesters (2023) focus on the time t optimal policy problem —how to set
the policy path today given the state of the economy—, instead of the unconditional policy
problem that we consider here —how to set up the policy rule to minimize the unconditional
loss—. Barnichon and Mesters (2023) show that the characterization of the optimal target-
ing policy rule can be reduced to the estimation of two sufficient statistics (i) the impulse
responses of the policy objectives to policy shocks, and (ii) oracle forecasts for the policy
objectives conditional on some baseline policy rule. McKay and Wolf (2022, 2023) offer a
similar result in the context of unconditional loss minimization. This paper uses a different
set of sufficient statistics—policy and non-policy shocks—, allowing to by-pass the need for
conditional forecasts data as well as providing an economic interpretation for the sources of
optimization failures, as discussed above.
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2 Illustrative example
Before formally describing our general framework, we first illustrate how it is possible to
evaluate and compare policy makers without having access to the underlying economic model
nor the policy rule. To illustrate the method, we take a baseline New Keynesian (NK) model,
which allows us to highlight the main mechanisms of our approach and relate to the broad
NK literature (e.g. Galí, 2015).

The log-linearized Phillips curve and intertemporal (IS) curve of the baseline New-
Keynesian model are given by

πt = βEtπt+1 + κxt + σξξt , (1)

xt = Etxt+1 −
1

σ
(it − Etπt+1) , (2)

with πt the inflation gap, xt the output gap, it the nominal interest rate set by the central
bank and ξt a cost-push shock.2 The parameters are collected in θ = (κ, σ, σξ)

′. We can
think of θ as capturing the economic “environment”.

The policy maker sets the interest rate following the rule

it = ϕππt + σϵϵt , (3)

where ϵt is a policy shock and ϕ = (ϕπ, σϵ) is a vector of policy parameters. We impose that
the structural shocks ξt and ϵt are serially and mutually uncorrelated with mean zero and
unit variance.3

For ϕπ > 1 we can solve the model and express the endogenous variables Yt = (πt, xt)
′ as

functions of the exogenous shocks.

Yt = Γξt +Rϵt , with

Γ = Γ(ϕ, θ) = σξ

[
1

1+κϕπ/σ
−ϕπ/σ

1+κϕπ/σ

]
and R = R(ϕ, θ) = σϵ

[
−κ/σ

1+κϕπ/σ
−1/σ

1+κϕπ/σ

]
.

(4)

The vectors Γ and R capture the impulse responses of the policy objectives to the structural
shocks. Note that Γ and R depend on the environment parameters θ and the policy rule
parameters ϕ, which include the standard deviations of the structural shocks.

Evaluating policy makers requires taking a stance on a performance metric. To that
2In this work, we focus on stationary environments, in which variables evolve around their steady-state.

This excludes drifting policy objectives and cases of systematically too low or too high policy instruments;
for instance cases of hyper-inflation or unsustainable debt.

3This assumption is without loss of generality, and the generic treatment of section 3 accommodates more
general (notably serially correlated) exogenous processes.
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effect, we consider the unconditional loss function

L(ϕ; θ) = EY ′
t Yt , which using (4) becomes L(ϕ; θ) = Γ′Γ +R′R . (5)

Given this loss function, an “optimal reaction function” is defined as any ϕ that minimizes
L(ϕ; θ) given the underlying structure of the economy, i.e., given equations (1)-(3). An
optimal reaction function can thus be seen as a policy rule that best stabilizes (minimizes
the sum-of-squares) the impulse responses to shocks.

In this example the optimal reaction function is unique and given by ϕopt = (ϕopt
π , σopt

ϵ )′ =

(κσ, 0)′ (e.g. Galí, 2015). First, exogenous policy changes are not optimal, and an optimal
policy features no policy shocks (σopt

ϵ = 0, which implies R = 0). Second, the optimal
reaction coefficient ϕopt

π is the coefficient that minimizes the effects of cost-push shocks,
i.e., that best stabilizes Γ. The minimum loss is then given by Lopt = Γopt′Γopt, with
Γopt ≡ Γ(ϕopt, θ): the minimal effect of cost-push shocks that a policy maker can achieve on
average given the environment θ.

A naive approach to policy evaluation

Consider a policy maker with reaction function ϕ0 during her term and associated loss
L0 = L(ϕ0; θ). How should we evaluate that policy maker?

A naive approach would consist in comparing realized losses. Specifically, (i) compute
the average loss during a policy maker’s term, which provides an estimate of the loss L0,
and (ii) evaluate and rank policy makers based on that estimate. Policy makers with higher
average loss would then be deemed less performant.

Unfortunately, the parameter vector θ that describes the economic environment is outside
the control of the policy maker and acts as a confounder by influencing the impulse responses
to shocks and thus the loss, see (4) and (5).

To give a concrete example of how the economic environment can distort policy evalu-
ation, consider two policy makers —Red and Blue— following the same rule ϕπ = 1.5 but
operating in different environments: one with a steeper Phillips curve (κ = 0.5) and the
other with a flatter Phillips curve (κ = 0.2). Figure 1a plots the expected loss function as a
function of the parameter ϕπ for these two policy makers.4

The expected loss under Red —the policy maker under the steep Phillips curve— is lower
than under Blue —the policy maker under the flat Phillips curve—: the empty dot is lower
for Red than for Blue. A naive approach to policy evaluation would thus conclude that Red
is a better policy maker than Blue. However, it’s the exact opposite: in this example, Red is
further away from the optimal reaction function (filled dot) than Blue. In other words, Red

4As illustrative calibration, we take β = .99, σ = 6, σϵ = 0 and σξ = 1.
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Figure 1: Loss based Policy Evaluation
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(a) Naive loss-based evaluation
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(b) Using auxiliary loss to measure ∆

The optimal rule ϕopt
π is indicated by the filled dots. The empty dots indicated the policy

maker’s policy rule ϕ0
π. The left panel depicts the original loss function L(ϕ; θ) with ϕ =

(ϕπ, 0) and traces the loss as a function of ϕπ. The right panel depicts the auxiliary loss
function L(τ ;ϕ0, θ) with τ = (τξ, 0) and traces the loss as a function of τξ. Note how the
levels of both loss functions are identical in two points: (i) at the baseline rule ϕ0 and (ii)
at the optimum.

performs less well than Blue. The reason for these different conclusions is the underlying
environment: in the steep Phillips curve world of Red, it is easier to achieve a lower loss.

To properly compare Red and Blue, we must thus take into account the environment, or
in other words, measure how far is a policy maker from the minimum loss possible given the
environment. This is the Distance to Minimum Loss (DML), defined as

∆ = L0 − Lopt , (6)

and depicted in Figure 1a: the distance between the actual expected loss and the feasible
minimum loss.

A sufficient statistics approach to policy evaluation

To measure the DML, one possible approach consists in specifying a structural model, fit that
model to the data spanning the policy maker’s term and then compute the minimum feasible
loss Lopt from that model. In this example this amounts to specifying the Phillips and IS
curves and estimating the associated parameters θ. A risk with this approach however is
model mis-specification: if the model does not capture the full complexity of the underlying
environment, the policy assessment can be compromised.

In this paper, we propose a different approach to measure ∆, an approach that requires
minimal assumptions on the underlying economic model.
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A class of policy rule counter-factuals To measure the minimum attainable loss Lopt,
we characterize the optimal reaction function ϕopt in a different way. Instead of minimizing
the loss with respect to the reaction coefficients in front of endogenous variables (as is
common in the literature, e.g., Galí (2015)), we propose to optimize with respect to the
reaction coefficients in front of structural shocks. While this class of rule counterfactuals
could seem of little direct interest, they have two important, yet overlooked, properties: (i)
the effects of counterfactual reaction to structural shocks can be computed with minimal
assumptions on the underlying model, depending only on estimable sufficient statistics, and
(ii) the optimal reaction coefficients to structural shocks is sufficient to fully characterize the
optimal policy rule, and thus to compute the minimum attainable loss.

To see that, recall that ϕ0 = (ϕ0
π, σ

0
ϵ ) is the policy maker’s reaction function and consider

the policy rule counter-factual

it = ϕ0
ππt + σ0

ϵ (τξξt + τϵϵt)︸ ︷︷ ︸
Reaction adjustment

+σ0
ϵ ϵt , (7)

where τ = (τξ, τϵ)
′ is a vector of responses to structural shocks. Unlike the original reaction

function (3), the modified reaction function (7) fixes the reaction coefficients ϕ0 at their
baseline value.

Following the same steps that led to (4), we can solve the model under that modified
policy rule and express the endogenous variables as a function of exogenous shocks to get

Yt = (Γ0 +R0τξ)ξt + (R0 +R0τϵ)ϵt , (8)

where Γ0 = Γ(ϕ0, θ) and R0 = R(ϕ0, θ).
From expression (8), we can see that Γ0 + R0τξ is the impulse response to cost-push

shocks after the reaction function adjustment τξ. In other words, the adjustment τξ modifies
the impulse response to cost-push shocks from Γ0 to Γ0 + R0τξ, which means that the
“old” impulse responses Γ0 and R0 are all we need to compute the effects of the policy rule
counter-factual (7).

Optimal reaction adjustment From (8), we can use Γ0 and R0 to search for the optimal
reaction coefficient to structural shocks. To that effect, it is helpful to define an auxiliary
loss function that takes τ , the vector of reaction coefficients to shocks, as its arguments while
holding ϕ0 fixed.

L(τ ;ϕ0, θ) = Lξ(τξ;ϕ
0, θ) + Lϵ(τϵ;ϕ

0, θ) . (9)
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The first component Lξ(τξ;ϕ
0, θ) = ∥Γ0 + R0τξ∥2 captures how a reaction adjustment τξ

affects the loss through its effect on the impulse responses to cost-push shock. Similarly, the
second component Lϵ(τϵ;ϕ0, θ) = ∥R0+R0τϵ∥2 captures how a reaction adjustment τϵ affects
the loss through its effect on the impulse responses to policy shocks.

Solving for the optimum reaction adjustment

τ ∗ = argmin
τ

L(τ ;ϕ0, θ) , ⇒ τ ∗ξ = −(R0′R0)−1R0′Γ0 and τ ∗ϵ = −1 . (10)

The statistic τ ∗ is the Optimal Reaction Adjustment (ORA):5 (i) it adjusts the reaction
to non-policy shocks ξt in order to minimize their effects, i.e., to reach Γopt; the minimal
effect of cost-push shock that a policy maker can achieve given the environment θ, and (ii)
it cancels monetary mistakes by setting policy shocks back to zero with τ ∗ϵ = −1.

Distance to minimum loss While the ORA itself may not be of direct interest to pol-
icy makers—the ORA is a reaction coefficient to unobserved structural shocks instead of
endogenous variables—, its importance comes from its one key property: it allows to fully
characterize the optimal reaction function and thereby compute the minimum loss.6

Indeed, we have
L(τ ∗;ϕ0, θ) = Lopt . (11)

This means that the auxiliary loss function L(τ ;ϕ0, θ) has the same minimum as the original
loss function L(ϕ; θ).7

Figure 1b traces out the auxiliary loss function (9) as a function of τξ. While the auxiliary
loss function is different from the original loss function L(ϕ; θ) (Figure 1a), note how the two
functions coincide in two points: First, by construction when τ = 0 the auxiliary loss function
coincides with the original loss function taken at the policy makers choice ϕ0. Second, and

5Note how τ∗ξ is the coefficient of a regression of Γ0 on −R0; a regression in impulse response space.
Intuitively, Γ0 (the impulse response to a cost-push shock) captures what the policy maker did on average to
counteract cost-push shocks with his rule ϕ0, while R0 (the impulse response to a monetary shock) captures
what the policy maker could have done to counteract cost-push shocks —how reacting to ξt by τ could have
better stabilized the effect of cost-push shocks by transforming Γ0 into Γ0 + τR0, see (8)—. A regression on
R0 on Γ0 precisely finds the τ that minimizes the sum-of-squares of that adjusted impulse response, i.e., that
best cancels out the effects of non-policy shock. At an optimal policy rule, Γ0 and R0 should be orthogonal.

6Note that the optimal reaction coefficients τ∗ can also be used to recover ϕopt —the optimal coefficients
of the instrument rule—, but this requires specifying a functional form for the policy instrument rule; an
extra assumption that is not needed for computing τ∗.

7To see this plug in τ∗ into the auxiliary loss function to obtain

L(τ∗;ϕ0, θ) = Γ0′(I −R0(R0′R0)−1R0′)Γ0

=
σ2
ξ

1 + κ2
= L(ϕopt; θ) ,

using the expressions for Γ0 and R0.
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this is key, the auxiliary loss function has the same minimum as the original loss function.
From those two points, we can compute the distance to minimum loss ∆ based on

∆ = L0 − Lopt = ∆ξ +∆ϵ , (12)

where
∆ξ = Γ0′R0

(
R0′R0

)−1

R0′Γ0 and ∆ϵ = R0′R0 . (13)

The expression shows that the DML can be computed from the impulse responses to policy
and non-policy shocks, i.e. R0 and Γ0.

Figure 1 summarizes the main idea underlying our approach. Looking at both panels,
the DML can be computed either from the original loss function or from the auxiliary loss
function. By going through the auxiliary loss function (i.e., by studying how the loss depends
on the policy maker’s systematic reaction to structural shocks), we can compute the DML
with minimal assumptions on the underlying model, as the derivatives of the auxiliary loss
function depend only on estimable sufficient statistics: the impulse responses R0 and Γ0.
Figure 1b also illustrates how the ORA and DML can be seen as two sides of the same coin
—two complementary ways to evaluate a policy maker—. The ORA measures how far is
a policy maker’s reaction coefficient from the optimal reaction coefficient, while the DML
captures the “welfare” consequences of that sub-optimal reaction coefficient.

In sum, this example illustrates how we can evaluate and compare policy makers based on
their DML without specifying an explicit reaction function nor a specific structural macro
model. Instead, the only requirement is to estimate two sufficient statistics: the impulse
responses Γ and R over a policy maker’s term. The next sections show that these findings
continue to hold for general linear forward looking macro models.

3 Environment
We describe a general stationary macro environment for a policy maker (or institution) who
faces an infinite horizon economy. To describe the economy we distinguish between two types
of observable variables: policy instruments pt ∈ RMp and non-policy variables yt ∈ RMy . The
policy instruments are different from the other variables as they are under the direct control
of the policy maker.

To describe the economy we use a sequence space representation (e.g., Auclert et al.,
2021). Let P = (p′0, p

′
1, . . .)

′ and Y = (y′0, y
′
1, . . .)

′ denote the paths for the policy instruments
and non-policy variables. Working under perfect foresight, we consider a generic model for
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the paths of the endogenous variables

AyyY −AypP = ByξΞ

AppP−ApyY = BpξΞ+ Bpϵϵ
, (14)

where ϵ = (ϵ′0, ϵ
′
1, . . .)

′ and Ξ = (ξ′0, ξ
′
1, · · · )′ are sequences of policy and non-policy shocks,

respectively. The first equation captures the non-policy block of the economy, while the
second equation captures the policy rule.

We normalize all elements of Ξ and ϵ to have mean zero and unit variance.8 Also,
we assume that they are serially and mutually uncorrelated, consistent with the common
definition of structural shocks (e.g. Bernanke, 1986; Ramey, 2016).9 The structural maps
A.. and B.. are conformable and may depend on underlying structural parameters. We
conveniently split them in two parts: the economic environment θ = {Ayy,Ayp,Byξ} which
the policy maker takes as given, and the reaction function ϕ = {App,Apy,Bpξ,Bpϵ}, which
is under the control of the policy maker and we assume that Bpϵ is invertible. Further, we
impose that ϕ and θ are independent in the sense that ∂θi/∂ϕj = 0 for all entries i, j, i.e.
changing the reaction function does not directly change the coefficients θ and all effects of ϕ
on Y go via the policy path P.

We denote by Φ the set of all reaction functions ϕ for which the model (14) implies a
unique equilibrium, that is all ϕ for which

A =

(
Ayy Ayp

Apy App

)
is invertible.

Many structural models found in the literature can be written in the form of (14); prominent
examples include New Keynesian models and heterogeneous agents models.

For any ϕ ∈ Φ we can write the expected path of the non-policy variables as a linear
function of the policy and non-policy shocks.

Lemma 1. Given the generic model (14) with ϕ ∈ Φ, we have

Y = Γ(ϕ, θ)Ξ+R(ϕ, θ)ϵ . (15)

The maps Γ(ϕ, θ) and R(ϕ, θ) capture the causal effects of the structural shocks Ξ and
ϵ on the non-policy variables. Explicit characterizations for Γ(ϕ, θ) and R(ϕ, θ) are given in

8The unit variance normalization is without loss of generality as the elements of B.. are unrestricted.
9Note that if the elements of Ξ or ϵ are not serially uncorrelated it is always possible to redefine Byξ,Bpξ

and Bpϵ such that the equation residuals —the shocks— are uncorrelated. For example if var(Ξ) = Σ, then
redefine ByξΞ = B̃yξΞ̃ with B̃yξ = ByξΣ

1/2 and Ξ̃ = Σ−1/2Ξ such that Ξ̃ is serially uncorrelated. The same
can be done for BpξΞ or Bpϵϵ.

12



the appendix. Note the similarity between (15) and (4), as the illustrative static NK model
is a special case with only contemporaneous shocks.

Lemma 1 implies that the identification of the impulse responses requires observing part
of the future shocks in Ξ and ϵ. That is, news shocks at the different horizons are needed
for identification.

Evaluation criteria

We consider a researcher who is interested in evaluating a policy maker based on her success
at stabilizing some subset of the non-policy variables yt around some desired targets y∗ for
some time periods t = 0, 1, 2, . . .. For ease of notation we will set the targets to zero, as we
can think of yt as defined in deviation from the desired targets. In general, we will see that
the target values y∗ are not needed to evaluate reaction functions.

We measure performance using the loss function

L(ϕ; θ) = EY′WY , (16)

where W is a diagonal matrix, with non-negative entries, which selects and weights the
specific variables and horizons that are part of the researcher’s evaluation criteria. The loss
(16) is the researcher’s evaluation criterion for scoring policy maker performance —an input
into our framework—.

The actions of the policy maker are summarized by the reaction function ϕ. We define
a reaction function to be optimal if it minimizes the loss function (16). Formally, the set of
optimal reaction functions is given by

Φopt =

{
ϕ : ϕ ∈ argmin

ϕ∈Φ
L(ϕ; θ) s.t (14)

}
. (17)

The definition implies that we only consider optimal reaction functions that lie in Φ; the set
of reaction functions which imply a unique equilibrium.

4 Policy evaluation with sufficient statistics
In this section, we show how we can evaluate a policy maker after her term by measuring the
distance between the loss under her reaction function, denoted by ϕ0, and the loss under the
optimal reaction function. To that effect, we define the Distance to Minimum Loss (DML)
as

∆ = L0 − Lopt , (18)
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where L0 = L(ϕ0; θ) is the loss under the actual rule ϕ0 and Lopt = L(ϕopt; θ) is the loss
under an optimal rule ϕopt ∈ Φopt as defined in (17).

4.1 Computing the distance to minimum loss

Following the same steps as the simple example of Section 2, we propose to measure the DML
by considering a thought experiment where we adjust the policy maker’s reaction coefficients
to the structural shocks. Specifically, consider the auxiliary reaction function

A0
ppP−A0

pyY = B0
pξΞ+ B0

pϵϵ+ B0
pϵ(TξΞ+ Tϵϵ) , (19)

where T = (Tξ, Tϵ) adjusts the response to the structural shocks Ξ and ϵ.10 Each element
of T corresponds to a different rule counterfactual, in which we modify how one element of
the policy path responds to one of the shocks.

The following lemma establishes how a rule adjustment T affects the equilibrium alloca-
tion

Lemma 2. Consider the generic model (14) with ϕ0 ∈ Φ and the modified policy rule (19).
We have

Y = (Γ0 +R0Tξ)Ξ+ (R0 +R0Tϵ)ϵ , (20)

where Γ0 ≡ Γ(ϕ0, θ) and R0 ≡ R(ϕ0, θ).

The reaction adjustment T affects the equilibrium by changing the impulse responses to
non-policy shocks from Γ0 to Γ0 +R0Tξ and the impulse responses to policy shock from R0

to R0+R0Tϵ , so that knowledge of the impulse response matrix R0 is sufficient to compute
the policy rule counterfactuals embedded in the T adjustments.

We now define the auxiliary loss function

L(T ;ϕ0, θ) = EY′WY with Y = (Γ0 +R0Tξ)Ξ+ (R0 +R0Tϵ)ϵ , (21)

which allows to trace out how changing the policy maker’s reaction to any individual shock
affects the loss.

The Optimal Reaction Adjustment (ORA) is the adjustment that minimizes the auxiliary
10To help understand the elements of T in this sequence-space representation, imagine that there is only

one policy instrument and one type of non-policy shock: an oil price shock. The upper-left element of Tξ
(Tξ,00) is an adjustment to the contemporaneous response of the policy instrument to a contemporaneous
oil shock. The element Tξ,01 is an adjustment to the contemporaneous response of the policy instrument to
a news oil shock announced today but affecting oil prices next period; the element Tξ,10 is an adjustment to
the response of the policy instrument next period to a contemporaneous oil shock; and so on.
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loss function, i.e. T ∗ = argminT L(T ;ϕ0, θ), and we have

T ∗ = [T ∗
ξ , T ∗

ϵ ] with T ∗
ξ = −(R0′WR0)−1R0′WΓ0 and T ∗

ϵ = −I , (22)

where I is the identity map. Note that the ORA has the same geometric interpretation as
discussed in the simple example, and T ∗

ξ is equal to the (weighted) least-square regression
of the selected non-policy impulse responses Γ0 on the selected policy impulse responses R0.
The only difference is the weighting matrix W , which is merely a selection tool used to select
the variables that comprise the researcher’s evaluation criteria.

Using the ORA we can establish the following key result for the distance to minimum
loss defined in (18).

Proposition 1. Given the generic model (14), with ϕ0 ∈ Φ, we have that

1. L(T ∗;ϕ0, θ) = Lopt

2. The DML statistic ∆ = L0 − Lopt = ∆ξ +∆ϵ where

∆ξ = Tr(Γ0′WR0(R0′WR0)−1R0′WΓ0) and ∆ϵ = Tr(R0′WR0) .

The first part of the proposition states that the auxiliary loss function, when evaluated
at the ORA statistic, attains the minimum loss as defined in (18). This is our identification
result: knowledge of the optimal reaction to the different structural shocks is sufficient to
fully characterize the optimal policy rule and thus to compute the minimum attainable loss
Lopt. The second part of the proposition states that the DML —the distance between L0

and Lopt— can be computed from sufficient statistics alone:—the impulse responses R0 and
Γ0 to policy and non-policy shocks—.

4.2 Policy evaluation with subset shock identification

Identifying the ORA and the DML requires the identification of all the elements of R0 and
Γ0 which in turn requires to identify all the different types of non-policy shocks that affected
the economy (including news shocks) as well as all the different policy shocks (including
news shocks). In practice, this may not be possible, and a researcher may only be able to
estimate a subset of all policy and non-policy shocks. Fortunately, it is possible to evaluate
policy makers even with subset shock identification.

To formalize this, let ϵa denote any subset of ϵ and Ξb denote any subset of Ξ. The
corresponding sets of impulse responses are denoted by Ra and Γb. To measure the corre-
sponding subset distance to minimum loss, we proceed similarly to Section 4.1. That is we
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consider the augmented policy rule

A0
ppP−A0

pyY = B0
pξΞ+ B0

pϵϵ+ B0
pϵa(Tξ,abΞb + Tϵ,aaϵa) , (23)

where now only the responses to the identifiable shocks are adjusted by Tab = (Tξ,ab, Tϵ,aa).
The auxiliary loss function L(T ;ϕ0, θ) in (21) allows to trace out the consequences of modi-
fying Tab. Slightly abusing notation, we define L(Tab;ϕ

0, θ) = L(Tab, T−a,−b = 0;ϕ0, θ) where
the not adjusted coefficients T−a,−b are set to zero. Using the auxiliary loss function we can
compute the optimal reaction adjustment for Tab and subsequently define the subset distance
to minimum loss. The following proposition summarizes the results.

Proposition 2. Given the generic model (14), with ϕ0 ∈ Φ, we have that

1. Lopt ≤ L(T ∗
ab;ϕ

0, θ) ≤ L0 for the subset ORA statistic T ∗
ab = argminTab L(Tab;ϕ

0, θ),

T ∗
ab = [T ∗

ξ,ab, T ∗
ϵ,aa] , T ∗

ξ,ab = −(R0′

a WR0
a)

−1R0′

a WΓ0
b and T ∗

ϵ,aa = −Ia

2. The subset DML statistic ∆ab = L0 − L(T ∗
ab;ϕ

0, θ) = ∆ξ,ab +∆ϵ,aa where

∆ξ,ab = Tr(Γ0′

b WR0
a(R0′

a WR0
a)

−1R0′

a WΓ0
b) and ∆ϵ,aa = Tr(R0′

a WR0
a)

3. The subset DML bounds ∆ab ≤ ∆a ≤ ∆ab + E0
ab, where ∆a = ∆ξ,a + ∆ϵ,aa with

∆ξ,a = Tr(Γ0′WR0
a(R0′

a WR0
a)

−1R0′
a WΓ0) , and

E0
ab ≡ L0 − L0

ab with L0
ab = Tr(Γ0′

b WΓ0
b) + Tr(R0′

a WR0
a) . (24)

The first part defines the subset ORA statistic T ∗
ab, where T ∗

ξ,ab measures by how much
to adjust the systematic reaction of the policy instruments a to the non-policy shocks Ξb

in order to best lower the loss L0. The second part defines the subset DML statistic ∆ab

corresponding to T ∗
ab, i.e., the distance to minimum loss for a policy maker optimizing the

reactions of her a policy instruments to the b non-policy shocks.
Each individual element of T ∗

ab has an economic interpretation; corresponding to a specific
action behind a suboptimal policy, i.e., a specific coefficient in the policy rule,11 and the sub-
distance ∆ab provides a summary measure of overall performance for the subset of shocks
we could identify.

The third part of the proposition puts bounds on ∆a, the distance to minimum loss for
the policy instruments captured by subset a, allowing to measure the “exhaustivity” of a

11To give a concrete example, say we identified contemporaneous shocks to the central bank’s policy rate
and contemporaneous shocks to oil prices. Then the corresponding ORA entry will assess how the policy
maker used the contemporaneous policy rate to minimize the effects of contemporaneous oil shocks.
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subset policy evaluation.12 It does so by exploiting the (estimable) unexplained loss E0
ab —the

loss that cannot be accounted by our subsets a and b of identified shocks—.13 Intuitively,
the lower bound corresponds to the case where the unexplained loss is already minimal,
that is could not have been lowered with another reaction function, while the upper bound
corresponds to the case where the unexplained loss could have been entirely set to zero with
a different reaction function. The larger the fraction of the total loss that can be identified
with the subset b, the tighter the confidence bounds, and thus the more exhaustive the overall
policy evaluation: in the limit where we can identify all structural shocks, the unexplained
loss is zero (E0

ab = 0), the upper and lower bounds coincide, and we have an exhaustive policy
evaluation for the policy instruments captured by the subset a.

4.3 Ranking policy makers

Consider now a researcher aiming to compare the performance of different policy makers.
Based on the previous sections we can evaluate policy makers in two ways: the distance to
the optimal reaction adjustment (the ORA) and the distance to minimum loss (the DML):
both depict the same sub-optimal policy but from a different angle. The ORA measures
the sub-optimality of the reaction function —good policy/bad policy—, while the DML
measures the consequence of that sub-optimal reaction on the loss function. Depending on
the variance of the underlying shocks and on the structure of the economy (i.e., the shape of
the loss function in Figure 1), the same ORA may imply small or large distances to minimum
loss. This is the good luck/bad luck component of policy outcomes. For these reasons, we
propose to compare policy makers based on both the ORA and the DML statistics.

Definition 1 (Ranking). Given two policy makers j = A,B with ϕj ∈ Φ and θj. Let τ jlk be
the l, k entry of T j∗

ab , and ∆j
lk be the DML implied by τ jlk. We have

• A is ORA-ranked above B for the element lk if |τAlk | < |τBlk |.

• A is DML-ranked above B for the element lk if |∆A
lk| < |∆B

lk|.

These rankings are shock-specific comparisons; they compare how well different policy
makers reacted to the same type of non-policy shock. As such, they require the identification
of the same policy and non-policy shocks across policy makers. This requires identifying the
same type of shock (e.g., an oil shock vs a financial shock), as well as the same dynamic type

12For instance, if the set a only includes contemporaneous policy shocks, the distance ∆a measures how
well the policy maker used its contemporaneous policy instrument in response to all the non-policy shocks
that could affect the economy.

13The unexplained loss E0
ab = L0 −L0

ab is computable using the identified impulse responses (for L0
ab) and

the realizations of the relevant macro variables over the policy makers term (for L0).
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of shock, for instance identifying the same contemporaneous oil shocks.14 If it is not possible
to identify the same dynamic type of shock across policy makers, a solution is to consider a
higher level of time aggregation, as aggregating the paths in (14) to a lower frequency allows
to mute dynamic heterogeneity across shocks. In the limit the policy problem becomes
static; a situation where comparable dynamic profiles can always be guaranteed. In the
web-appendix we explore this route in more details.

An alternative to shock-specific comparisons is to exploit the bounds on ∆a provided by
Proposition 2 and to rank policy makers based on the total distance to minimum loss for the
policy instruments a. When the bounds do not overlap, this approach allows for an overall
comparison of policy makers (i.e., taking into account all non-policy shocks), even when not
all non-policy shocks can be identified.

5 Evaluating US monetary policy, 1879-2019
In this section we use our methodology to evaluate the conduct of monetary policy in the US
over the 1879-2019 period. We consider four distinct periods: (i) the Gold Standard period
1879-1912 before the creation of the Federal Reserve, (ii) the early Fed years 1913-1941, (iii)
the post World War II period 1954-1984 and (iv) the post-Volcker period 1990-2019.

During the Gold Standard period, there was no active monetary policy (the Federal
Reserve did not exist yet), and we use this period as a benchmark to see what a fictional
policy institution could have done in this period. The Gold Standard monetary regime is
now generally considered a sub-optimal regime with excessive fluctuations in inflation and
unemployment (e.g. Friedman and Schwartz, 1963). The early Fed period starts with the
founding of the Fed in 1913 and ends with the US entering the second world war. The post-
war period starts in 1951 with the Fed regaining some independence after the Treasury-
Fed accord (e.g. Romer and Romer, 2004a).15 The post Volcker period covers the Great
Moderation period and ends right before the pandemic.

We evaluate the Fed as a policy institution based on the loss function

L =
1

2
E

H∑
h=0

βh(π2
t+h + λu2

t+h) , (25)

where πt denotes the inflation gap, ut the unemployment rate gap, β the discount factor
and λ the preference parameter. While the targets π∗ and u∗ are irrelevant to rank/assess

14This requirement is no different from numerous earlier works on time-varying impulse responses (e.g.
Primiceri, 2005).

15We exclude the period covering World War II until the Treasury-Fed accord of 1951, as the Fed was
financing the war effort and had no independence.
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reaction functions,16 we posit that π∗ = 2 and u∗ = 5 in order to compute realized losses in
the naive approach that we describe next.

Our baseline choice for the loss function sets β = λ = 1, and we take H = 30 quarters,
a horizon large enough to ensure that the impulse responses have time to mean-revert. The
data are quarterly, inflation is measured as year-on-year inflation based on the output deflator
from Balke and Gordon (1986), and the unemployment rate before 1948 is taken from the
NBER Macrohistory database over 1929-1948 and extended back to 1876 by interpolating
the annual series from Weir (1992) and Vernon (1994).

5.1 Naive approach

To provide a benchmark for our results, we first take a naive approach where we evaluate the
Fed based on L0, which we estimate from realized outcomes for inflation and unemployment
(Figure 2). Table 1 reports realized losses for inflation and unemployment (L̂x =

∑te
j=ts

x2
j

for x = π, u) as well as the total realized loss (L̂π + L̂u).
The Early Fed period comes out as the worse period by far, with losses almost an order

of magnitude larger than in the other periods. This is driven by the Great Depression; not
only the large increase in unemployment but also the large movements in inflation, from
the high inflation of the early 20s to the large deflation of the early 30s. In comparison,
the passive Gold Standard period appears much more successful, suffering only from high
inflation volatility. In fact, losses during the Gold Standard period are of similar magnitudes
to the losses realized during the Post World War II, being on a par in terms of unemployment
losses. The only period with clear superior outcomes is the Post Volcker Period, also referred
to as the Great Moderation, with both stable inflation and unemployment and thus low losses
throughout.

As discussed earlier however, these macroeconomic outcomes cannot be interpreted as
measures of performance —good/bad policy—, because they do not take into account the
underlying environment of each specific period. To do so, we turn to the methodology
proposed in this paper.

5.2 Policy evaluation with sufficient statistics

We will evaluate the monetary authorities based on how well they used the contemporaneous
policy rate in response to five separate non-policy shocks: financial shocks, government
spending shocks, energy price shocks, inflation expectation shocks and TFP shocks.

16The ORA only depends on impulse responses, which are path deviations following an innovation, and
as such do not depend on the constant terms in Y.

19



5.3 Policy evaluation with sufficient statistics

We will evaluate the monetary authorities based on how well they used the contemporaneous
policy rate in response to five separate non-policy shocks: financial shocks, government
spending shocks, energy price shocks, inflation expectation shocks and TFP shocks.

Econometric implementation We rely on a Bayesian structural vector autoregressive
model (SVAR) that includes a proxy for the policy shock, the non-policy shock, the outcome
variables πt and ut, the policy rate pt, as well as possibly additional control variables wt.
During the 1879-1912 Gold Standard period where there is no policy institution, we take
the 3-months treasury rate as the “policy rate” that a fictitious central bank could have
controlled. For the 1913-1941 early Fed period, we use the fed discount rate as the policy
rate. To capture the policy stance during the post WWII periods, we use the fed funds rate
as the policy rate. The specific additional variables wt and instruments zt are discussed in
detail below. The historical monetary data are taken from Balke and Gordon (1986).

The SVAR is specified for yt = (zξt , πt, ut, z
ϵ
t , pt, w

′
t)

′, where zξt is an instrument (or proxy)
for the contemporaneous non-policy shock, zϵt is an instrument for the conventional con-
temporaneous monetary policy shock and wt denotes additional control variables. We order
the non-policy proxy first. As in Romer and Romer (2004b), we order the monetary proxy
after unemployment and inflation (and before the federal funds rate), imposing the addi-
tional restriction that monetary policy does not affect inflation and unemployment within
the period.

We estimate the reduced form of the SVAR model using standard Bayesian methods,
which shrink the reduced form VAR coefficients using a Minnesota style prior. The prior
variance hyper-parameters follow the recommendations in Canova (2007). We normalize all
shocks such that they have unit variance which can be implemented in practice by com-
puting the conventional one standard deviation impulse responses. This scaling ensures
comparability of the shocks across periods.

With the draws of the parameters from the posterior density we can compute the impulse
responses to a policy shock ϵt and the impulse responses to non-policy shock ξt. We will
report the corresponding subset ORA T ∗

ab and DML ∆∗
ab statistics, as well as the bounds on

∆a based on Proposition 2. In addition, to better understand the reasons for a sub-optimal
reaction function, we will report the ORA adjusted impulse responses Γ∗ = Γ0 +R0T ∗

ab for
each element of the subset ab: these will capture how the economy how the policy instrument
and the economy would have behaved under a more appropriate reaction function.
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Shock identification

For each period, we identify a monetary policy shock and five non-policy shocks: financial
shocks, government spending shocks, energy price shocks, inflation expectation shocks and
TFP shocks.

Monetary policy shocks We will evaluate policy makers based on their contemporaneous
policy response to exogenous shocks, aso that we need to identify contemporaneous shocks
to the policy rate.

For the Post Volcker period we use the high-frequency identification (HFI) approach, pi-
oneered by Kuttner (2001) and Gürkaynak, Sack and Swanson (2005), and we use surprises
in fed funds futures prices around FOMC announcement as proxies for monetary shocks. To
isolate innovations to the contemporaneous policy rate, we use surprises to fed funds futures
at a short horizon, here 3-months ahead fed funds futures (FF4), which (with quarterly
data) ensures that the identified shock does not include news shocks to the future path of
policy.For the Post World War II period we use the Romer and Romer (2004b) identified
monetary policy shocks as instruments. For the Early Fed period we use the Friedman and
Schwartz (1963) dates extended by Romer and Romer (1989) as instruments to identify
monetary policy shocks. We include five episodes —1920Q1, 1931Q3, 1933Q1, 1937Q1 and
1941Q3— where movements in money were “unusual given economic developments” (Romer
and Romer, 1989). In the words of Romer and Romer (1989), these “unusual movements
arose, in Friedman and Schwartz’s view, from a conjunction of economic events, monetary
institutions and the doctrines and beliefs of the time and of particular individuals determin-
ing policy”.For the Pre Fed Gold Standard period, there is no clear baseline identification
approach to identify monetary shocks, and we propose a new approach that exploits a unique
feature of the Gold Standard. Under a Gold Standard, the monetary base depends on the
amount of gold in circulation, which can itself vary for exogenous reasons related to the ran-
dom nature of gold discoveries or development of new extraction techniques. As such, we use
unanticipated large gold mine discoveries (discoveries that led to gold rushes) as an instru-
ment for movements in the monetary base. To the extent that the timing of the discovery is
unrelated to the state of the business cycle, gold mine discovery will be a valid instrument.
Mirroring Gold discovery, we will also use peak mine extraction —the moment when one of
these large mines reached peak production—. The supplementary material provides more
discussion.

One limitation of using the “state of the art” identification scheme in each period is
that we rely on a different methodology to identify the monetary shock over each period.
Since each methodology has different strengths and weaknesses.17 As robustness, we use an

17For instance, exogeneity and relevance may differ across instrumental variables, see e.g., Barnichon and
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identification of monetary shock that is consistent across regimes, which will ensure that the
monetary shocks are identified in the exact same way across regimes. Specifically, we use
sign restrictions, another popular method to identify monetary shocks (e.g., Uhlig, 2005).
This approach has the benefit that the same identification scheme can be implemented over
the entire sampling period. With the VAR including inflation, unemployment, the policy
rate and the growth rate of the monetary base, we impose the following sign restrictions:
a positive monetary shock raises the short-term rate in impact, lowers money growth on
impact, and lowers inflation and raises unemployment after a year. Other than that, the
responses are unconstrained.

Non-policy shocks As financial shocks we use narratively identified bank panics. Each
included panic was triggered by either a run on a particular trust fund or by foreign devel-
opments. The dates for the banking panics are taken from Reinhart and Rogoff (2009) and
Romer and Romer (2017). To capture the severity of the bank run, each non-zero entry is
rescaled by the change in the BAA-AAA spread at the time of the run, similar to the re-
scaling of Bernanke et al. (1997) and Romer and Romer (2017).18 For government spending
shocks we use the news shocks to defense spending as constructed in Ramey and Zubairy
(2018). To identify productivity shocks we use the identification scheme of Gali (1999) and
Barnichon (2010): we estimate bi-variate VARs with log output per hour and unemploy-
ment over each policy regime, and we impose long-run identifying restrictions, specifically
that only productivity shocks can have permanent effects on productivity. The quarterly
time series for output per hour is taken from Petrosky-Nadeau and Zhang (2021) and starts
in 1890. To identify energy shocks, we extend the approach of Hamilton (1996) and Hamil-
ton (2003) by identifying energy shocks as instances when energy price rises above its 3-year
maximum or falls below its 3-year minimum. Since coal was the primary US energy source
until World War II and oil only became the pre-dominant energy source after World War II,
we measure energy price prices from the wholesale price index for fuel and lighting, available
over 1890-2019. As measure of inflation expectations, we rely on the Livingston survey that
has been continuously run over 1946-2019,19 and includes a question about 8-months ahead
inflation expectations. Prior to World War II, there are no systematic inflation expecta-
tion survey, so we instead rely on Cecchetti (1992)’s measure of 6-months ahead inflation

Mesters (2020) for a comparison of Romer and Romer (2004b) and Gürkaynak, Sack and Swanson (2005)
proxies.

18Using bank runs as 0-1 dummies does not change conclusions drastically though it makes the estimates
a bit less precise. Since the time series for AAA yields only start in 1919, we backcasted AAA yields before
1919 with yields on 10-year maturity government bonds from the Macro History database (Jordà et al.,
2019).

19The Livingston survey is conducted with a pool of professional forecasters from non-financial businesses,
investment banking firms, commercial banks, academic institutions, government, and insurance companies,
see Leduc, Sill and Stark (2007).
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expectations for the Early Fed period.20 To identify innovations to inflation expectations,
we proceed similarly to Leduc, Sill and Stark (2007) and project inflation expectations on
a set of controls that include past values of inflation expectation, inflation, unemployment,
lags of the 3-month and 10-year treasury rates. In addition, we also project on current and
past values of the other identified non-policy shocks: financial, government spending, energy
price and TFP. The idea of this exercise is to capture movements in inflation expectations
that cannot be explained by the other shocks, i.e., that go above and beyond the typical
effect of the non-policy shocks on inflation expectations.

5.4 Results

Before presenting our estimates for the ORA and DML statistics over the different periods,
Figure 3 presents a decomposition of L0 based on (24). The decomposition conveys how much
of the actual loss L0 can be explained by our identified non-policy shocks (the term L0

ab)
and how much remains “unexplained” (the term E0

ab). Recall that the larger the “explained”
part, the more exhaustive the policy evaluation will be, see Proposition 2.

We find that (i) our five non-policy shocks and one monetary shock explain about 60
percent of our estimate for L0. The period with the lowest share is the Pre-Fed period with
about 40 percent and the highest share is the Early Fed with about 70 percent. Overall,
these are large shares, providing reassurance that our overall policy assessment will be based
on the most important disturbances that affected the economy over each period. In terms
of shock composition, the main contributors in each period lines up well with common
wisdom: The Early Fed is characterized by large contributions of financial shocks, monetary
shocks and inflation expectation shocks (consistent with e.g., Romer, 1992). The Post WWII
period is characterized by large contributions of energy and inflation expectation shocks (e.g.,
Blinder, 2022). The Post Volcker period is characterized by a very small loss overall (the
Great Moderation).

Panel (i) of Table 2 reports our estimated subset DMLs for our five different shocks over
four periods. Each subset DML captures how much loss could have been avoided with a
better reaction to one of the shocks. The rightmost column reports our estimated bounds
for the total DML, and that column can be seen as our overall policy evaluation for each
period. It reports bounds on the total loss that could have been avoided with a better
reaction function, see Proposition 2.

To appreciate the contribution of policy to these losses, Panel (ii) of Table 2 reports the
20Cecchetti (1992)’s measure of inflation expectations relies on Mishkin (1981)’s insight that the ex-

ante real interest rate can be recovered from a projection of the ex-post real interest rate on the time t
information set. The difference between the ex-ante and ex-post real interest rate provides a measure of
inflation expectations.

23



ORA statistics computed over the four periods for our five non-policy shocks. Recall that
the ORA is an adjustment to the coefficient Bpξ in the policy rule,21 so that a negative ORA
indicates that the policy rate was set too high after a specific type of shock, either because
the policy rate was increased too much or because it did not lowered enough.22

Our main results are summarized in the next four paragraphs. In the supplementary
material, we show robustness to (a) our identification of monetary shocks, and (b) alternative
periods. Overall, our results are consistent with our baseline estimates discussed below, with
ORAs and DMLs of similar magnitudes and levels of statistical significance.

Result #1: Improved policy in the Post Volcker period Overall, we estimate strong
improvements in the conduct of monetary policy, but only in the last 30 years, i.e., roughly
after Volcker’s dis-inflation program.

Consider first our DML bounds (Table 2, Panel (i), right column), which capture how
much of the total loss could have been avoided with a more appropriate use of the contem-
poraneous policy rate. We can see that the Early Fed stands out with a much larger distance
to minimum loss than in any other period: the DML range is comfortably outside all our
other estimated ranges for the other periods. A mirror image of that Early Fed is the Post
Volcker period with much superior performances: the DML range is much smaller than at
any other time and lies outside all other estimated ranges. Interestingly, the Post WWII
period and Pre Fed periods are relatively similar in terms of overall performance with similar
ranges ∆.

To control for the size of the shocks as well as the underlying economic structure, i..e, to
isolate the contribution of policy to these losses, we can turn to the ORAs over each period
(Table 2, Panel (ii)). For the first 100 years of our study, we find no material improvement
in the reaction function, with similar deviations from optimality over the first three periods.
Comparing the rows of Table 2-Panel (ii) for the three periods before Volcker, we can see
ORAs of similar magnitudes with the average absolute ORA hovering around 0.6 for 100
years.

It is only in the last 30 years that we can detect improvements in the reaction function.
In the post Volcker period, the ORAs are substantially smaller (and non-significant) than
in the other periods, with an average absolute ORA of 0.2.23 In fact, the Post Volcker

21For instance, an ORA of 0.5 means that in response to a 1 standard deviation non-policy shock, the
reaction coefficient should have been 0.5 point larger.

22Comparing the subset ORAs across periods requires identifying the same type of non-policy shock across
periods. To assess robustness of our results to dynamic shock heterogeneity across periods, the supplementary
material reports the ORA statistics estimated for a higher level of time aggregation, with impulse responses
averaged over 3-year windows. The results are very similar to our baseline results in Table 2, indicating that
dynamic shock heterogeneity appears to be a minor concern for our Fed comparison across periods.

23Importantly, the non-significance of the Post Volcker ORAs is not due to imprecisely estimated impulse
responses. As we show in the Appendix, the Post Volcker impulse responses are estimated with reasonable
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ORA statistics are smaller across all non-policy shocks, meaning that policy performance
improves in all dimensions, from the responses to supply-type shocks like energy price shocks
and TFP shocks to the responses to demand-type shocks like government spending shocks
and financial shocks. That said, the consequences of these sub-optimal reaction functions
are very different across periods.

In terms of policy shocks however, i.e., deviations from a stable reaction function, the
conduct of policy did improve substantially before Volcker. While the early Fed stands out
with a large DML ∆ϵ and the Fed being directly responsible for large disturbances affecting
the economy, the post World War II sees a much smaller ∆ϵ. In other words, even though
the reaction function is not substantially superior in the post WWII period, erratic behavior
in the conduct of policy was much improved after WWII, in contrast to the stop-and-go
policies of the 30s or the over-reaction of the early 20s (e.g., Friedman and Schwartz, 1963;
Romer, 1992).

Result #2: Responding to financial shocks We will now focus in more details on
the reaction to financial shocks, contrasting the Post Volcker Fed with the Early Fed of
the 1920s-1930s. In a 2002 speech in honor of Milton Friedman 90th birthday, (then) Fed
governor Bernanke famously said: “Regarding the Great Depression. You’re right, we did
it. We’re very sorry. But thanks to you, we won’t do it again.” (Bernanke, 2002). In an
irony of history, the speech was made a full five years before the 2007-2008 financial crisis; a
crisis that saw an unprecedented Fed response (see e.g., Bernanke, 2013) with Bernanke as
Fed chairman.

Our results confirm Bernanke’s quote, both his historical claim as well as his prophecy:
the “poor” reaction function of the early Fed led to massive welfare losses, while the “good”
reaction function of the Post Volcker Fed ensured little welfare losses coming from a sub-
optimal reaction function.

To see this, we can first contrast the financial ORAs —the ORAs for financial shocks—
estimated for the Early Fed period and for the Post Volcker period. With τ ∗ = −1.2 (sta-
tistically significant), the Fed reaction to banking panics was too tight —a result echoing
previous findings in the literature (e.g., Friedman and Schwartz, 1963; Hamilton, 1987)—. In
contrast, the estimated ORA for the post Volcker Fed is four times smaller with τ ∗ = −0.3

and not statistically significant, indicating that the post Volcker Fed period reacted much
more appropriately and pointing to large improvements in the Fed’s reaction to financial
shocks.24 As a result, while the 2007-2008 financial disruptions were substantial, the corre-

precisions and the point estimates are sensible. The ORAs are small, because the impulse responses to
non-policy shocks are (almost) orthogonal to the impulse responses to policy shocks.

24That said, a point estimate at −0.3 indicates that the Fed should have lowered the fed funds rate more
in response to financial shocks (according to the posterior mean). This could indicate that the presence of
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sponding estimated DML over the post-Volcker period is tiny (0.1); two orders magnitude
smaller than the DML for financial shocks for the Early Fed (27.7).

To better appreciate this reaction function improvement, Figures 4 and 5 display the
impulse responses underlying the financial ORAs estimated for 1913-1941 and 1990-2019.
The top rows show the impulse responses of inflation, unemployment and the interest rate
to a monetary policy shock, while the bottom rows show the responses of the same variables
to a financial shock.25

For the Early Fed period, notice how the Fed raised the discount rate in response to
financial shocks. Combined with the decline in inflation caused by the financial shock, this
means that the real policy rate increased substantially and monetary policy was contrac-
tionary, confirming earlier work on the monetary factors behind the Great Depression (e.g.,
Friedman and Schwartz, 1963; Hamilton, 1987). The ORA corrects this sub-optimal reaction
function and turns the table on monetary policy by running an expansionary policy. To see
that, Figure 4 (dashed green line) reports the ORA adjusted impulse responses. The ORA
leads to a major adjustment to the policy path —the policy rate now goes down substan-
tially on impact—, and the paths of inflation and unemployment are consequently much
more stable. In contrast, for the Post Volcker period (Figure 5) the policy rate goes down
following a financial shock (black line, lower-right panel), and the ORA only slightly adjusts
the response of the policy rate (green line), leading to modest adjustments to the responses
of inflation and unemployment.

Result #3: The Great Inflation US monetary policy during the 1970s has generally
been considered poor (e.g., Romer and Romer, 2004a), in particular not responding more
than one-to-one with changes in inflation (Clarida, Galí and Gertler, 2000) and violating the
so-called Taylor principle. However, beyond that Taylor principle, it has been difficult to
quantify how “poor” monetary policy had been.

Overall, we find that the Fed’s reaction function during the 60s-70s is on a par with the
reaction function of the early Fed, with ORAs of similar magnitudes, though the nature
and the sizes of the underlying shocks is different. Post World War II, the Fed reaction
was too weak following all the different supply-type shocks that we identified: energy price
shocks, TFP shocks as well as inflation expectation shocks. In fact, the reaction to inflation
expectation shocks over the 60s-70s displays the largest deviation from optimality over the
entire 150 year of monetary history with τ ∗ = 1.2, even slightly larger (in absolute value)

the zero lower bound may have limited somewhat the Fed’s ability to best react to the 2007-2008 financial
crisis.

25For both periods, a higher policy rate raises unemployment and lowers inflation, while a financial shock
lowers inflation and raises unemployment. That said, the inflation response is more muted in the post-Volcker
period, consistent with the anchoring of inflation expectations post Volcker or more generally with different
economies across historical periods.
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than the Fed’s poor reaction to bank runs during the Great Depression. The consequences of
these sub-optimal reactions were much smaller however, with DMLs an order of magnitude
smaller for the Post WWII period than for the Early Fed period.26

To illustrate these sub-optimal reaction functions, Figure 6 plots the impulse responses
underlying the ORAs for inflation expectation shocks. In response to an inflation expectation
shock, inflation rises progressively, but the policy rate does not respond, leading to negative
real interest rates and further increasing inflation. The (large) ORA adjustment restores
the Taylor principle: after the ORA, the policy rate rises strongly following an inflation
expectation shock (lower-right panel, Figure 6) and stems the rise in inflation (at the cost
of higher unemployment).

Result #4: The early Fed vs the passive Gold Standard In contrast to the sugges-
tive evidence of the naive approach (Table 1), the passive Gold Standard is not markedly
superior to the early Fed. In other words, the founding of the Fed did not deteriorate
performance relative to the passive monetary regime of the Gold Standard. Instead, the
reaction functions were just as “bad” before and after the founding of the Fed, though the
consequences (in terms of loss) were much larger for the Early Fed period.

Comparing the ORA before and after the founding of the Fed (Table 2-Panel (ii)), we
observe similar deviations from optimality. During the passive Gold Standard, monetary
policy is (unsurprisingly) too passive in the face of adverse shocks: be it bank runs or military
buildups.27 Comparing ORAs across two the periods, we can see that (i) the excessive
passivity simply continued after the founding of the Fed —the ORAs are similar across the
two periods—, and (ii) the excessive passivity of the early Fed is not limited to financial
distress, and it also extends to other shocks, here government spending shocks.28

6 Conclusion
In this paper, we proposed to evaluate makers based on their distance to minimum loss
(DML): the distance to the minimum attainable loss given the economic environment. We
showed that this approach can be implemented with minimal assumptions on the underlying
structural economic model, because the DML can be computed from two sets of sufficient

26There are two possible reasons why a given ORA translates into larger losses and hence into a larger
DML: (i) the magnitudes of the shocks themselves were larger in the Early Fed period, and/or (ii) the Early
Fed economy was less resilient in the face of adverse disturbances than the post WWII economy.

27To give a few noteworthy “misses” of the passive Gold Standard, the ORAs call for lower interest rates
(about 3/4 ppt) in the aftermaths of the 1893 and 1907 bank runs, as well as higher interest rates in response
to higher military spending following the war against Spain in 1898, and the navy build-up of 1902-1904.

28In particular, we find that the Fed’s delayed reaction to the large increase in military spending in 1917
is responsible for some of the inflation outburst of 1919-1920 (see also Romer, 1992).
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statistics: (i) the impulse responses of the policy objectives to non-policy shocks, and (ii)
the same impulse responses to policy shocks.

We evaluate US monetary policy over the past 150 years, where we find no material
improvement in the reaction function over the first 100 years, but large and uniform im-
provements in the last 30 years. A better understanding of the functioning of the economy
(Friedman and Schwartz, 1963), better and more timely data (Romer, 1986; Orphanides,
2001), better forecasting (Dominguez, Fair and Shapiro, 1988) and better causal inference
methods (Romer and Romer, 1989) could all be part of the improvements in policy over
the last 30 years. Parsing out these different reasons is an important question for future
research.

Going forward, our proposed methodology could be applied to many other important
evaluation questions; in the context of monetary policy (e.g., comparing central banks such
as the Fed vs the ECB during the Great Recession), in the context of fiscal policy (e.g.,
comparing the performance of US presidents, health policy (e.g., comparing governments’
policy responses to COVID), or climate change mitigation policy. We leave these questions
for future research.
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Appendix : Details and Proofs
Proof of Lemma 1. Define

A =

[
Ayy Ayp

Apy App

]
, Bξ =

[
Byξ

Bpξ

]
, J =

[
0

Bpϵ

]
and Z =

[
Y

P

]
. (26)

The model (14) is equivalent to
AZ = BξΞ+ Jϵ .

For any ϕ ∈ Φ we have that there exists unique equilibrium representation. This implies
that A is invertible and we obtain

Z = A−1Bξ︸ ︷︷ ︸
=D1

Ξ+A−1J︸ ︷︷ ︸
=D2

ϵ .

The block structure of D1 and D2 is given by

D1 =

[
Γ(ϕ, θ)

Γp(ϕ, θ)

]
and D2 =

[
R(ϕ, θ)

Rp(ϕ, θ)

]
,

where the maps Γ(ϕ, θ) and R(ϕ, θ) appear in the first position as they capture the effects of
the shocks on Y. The other maps capture the effects of the shocks on P. Explicit expression
can be obtained by by noting that A being invertible implies that App and Ayy−AypA−1

pp Apy

are invertible as Ayy is generally not invertible. We have

Γ(ϕ, θ) = D(Byξ +AypA−1
pp Bpξ) and R(ϕ, θ) = DAypA−1

pp Bpϵ , (27)

with D = (Ayy −AypA−1
pp Ayp)

−1.

Proof of Lemma 2. Given some ϕ ∈ Φ we can follow the same steps as the proof of Lemma
1 but using an augmented policy rule

AppP−ApyY = (Bpξ + BpϵTξ)Ξ+ (Bpϵ + BpϵTϵ)ϵ ,

and we obtain the equilibrium representation

Y = (Γ(ϕ, θ) +R(ϕ, θ)T )Ξ+ (R(ϕ, θ) +R(ϕ, θ)Tϵ)ϵ , (28)

where
Γ(ϕ, θ) = D(Byξ +AypA−1

pp Bpξ) and R(ϕ, θ) = DAypA−1
pp Bpϵ ,

34



with D = (Ayy −AypA−1
pp Ayp)

−1. We obtain Lemma 2 for ϕ = ϕ0.

Proof of Proposition 1. Part 1 requires showing Lopt = L(T ∗;ϕ0, θ). To do so we proceed me-
chanically and show {minϕ L s.t. (14)} = {minT L(T ;ϕ0, θ) s.t. (14) with App = A0

pp, Apy =

A0
py,Bpξ = B0

pξ, Bpϵ = B0
pϵ}. Note that Y can be written as Y = (DByξ +DAypA−1

pp Bpξ)Ξ+

DAypA−1
pp Bpϵϵ Using that the entries of Ξ and ϵ have mean zero, unit variance and are

uncorrelated we have that

L =E(Y′WY)

=Tr((Byξ +AypA−1
pp Bpξ)

′D′WD(Byξ +AypA−1
pp Bpξ))

+ Tr((DAypA−1
pp Bpϵ)

′WDAypA−1
pp Bpϵ) .

Regardless of the values of {App,Apy,Bpξ} the optimal solution for Bpϵ satisfies Bopt
pϵ = 0.

After setting Bpϵ = Bopt
pϵ the derivative maps of L with respect to {App,Apy,Bpξ} are given

by

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ)B′
pξA−1′

pp +

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ)(Byξ +AypA−1
pp Bpξ)

′D′A′
pyA−1′

pp = 0

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ)(Byξ +AypA−1
pp Bpξ)

′D′ = 0

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ) = 0

The last equation gives the derivative map with respect to Bpξ. Solving this expression for
Bpξ yields

Bopt
pξ = −[A−1′

pp A′
ypD′WDAypA−1

pp ]
−1A−1′

pp A′
ypD′WDByξ .

Further, it is easy to see that if the last equation holds then the first two equations also
hold. This holds regardless of App and Apy as long as the invertibility conditions above are
satisfied. It remains to show that Bopt

pξ = B0
pξ + B0

pϵT ∗
ξ and Bopt

pϵ = B0
pϵ + B0

pϵT ∗
ϵ . The latter is

straightforward as T ∗
ϵ = −I. For the former we have

B0
pξ + B0

pϵT ∗
ξ

= B0
pξ − B0

pϵ(R0′WR0)−1R0′WΓ0

= B0
pξ − B0

pϵ((D0A0
yp(A0

pp)
−1B0

pϵ)
′WD0A0

yp(A0
pp)

−1B0
pϵ)

−1(D0A0
yp(A0

pp)
−1B0

pϵ)
′WΓ0

= B0
pξ − ((D0A0

yp(A0
pp)

−1)′WD0A0
yp(A0

pp)
−1)−1(D0A0

yp(A0
pp)

−1)′WΓ0

= B0
pξ − ((D0A0

yp(A0
pp)

−1)′WD0A0
yp(A0

pp)
−1)−1(D0A0

yp(A0
pp)

−1)′WDByξ

+ ((D0A0
yp(A0

pp)
−1)′WD0A0

yp(A0
pp)

−1)−1(D0A0
yp(A0

pp)
−1)′WDAypA−1

pp Bpξ

= −((D0A0
yp(A0

pp)
−1)′WD0A0

yp(A0
pp)

−1)−1(D0A0
yp(A0

pp)
−1)′WDByξ = Bopt

pξ ,
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where the third equality uses that B0
pϵ is invertible.

Part 2 uses the optimal characterization from part 1. We have

∆ = L0 − Lopt

= Tr(Γ0′WΓ0) + Tr(R0′WR0)− Tr((Γ0 +R0T ∗
ξ )

′W(Γ0 +R0T ∗
ξ ))

= Tr(Γ0′WR0(R0′WR0)−1R0′WΓ0) + Tr(R0′WR0)

which completes the proof.

Proof of Proposition 2. For part 1 we note that

Lopt = L(T ∗;ϕ0, θ) = argmin
T

L(T ;ϕ0, θ)

≤ argmin
Tab

L(Tab, T−a,−b = 0;ϕ0, θ) = L(T ∗
ab;ϕ

0, θ)

≤ L(Tab = 0, T−a,−b = 0;ϕ0, θ) = L0 .

The explicit expressions for T ∗
ab are found by solving the linear quadratic problem

min
Tab

E(Y′WY) s.t. Y = (Γb +RaTξ,ab)Ξb + (Ra +RaTϵ,aa)ϵa + Γ−bΞ−b +R−aϵ−a ,

which is the equivalent of Lemma 2 when only adjusting Tab. For part 2, we use that
L0 = Tr(Γ0′WΓ0) + Tr(R0′WR0) and

L(T ∗
ab;ϕ

0, θ) =Tr((Γ0
b +R0

aT ∗
ξ,ab)

′W(Γ0
b +R0

aT ∗
ξ,ab))

+ Tr((R0
a +R0

aT ∗
ϵ,aa)

′W(R0
a +R0

aT ∗
ϵ,aa))

+ Tr(Γ0′

−bWΓ0
−b) + Tr(R0′

−aWR0
−a)

Subtracting ∆ab = L0 − L(T ∗
ab;ϕ

0, θ) gives ∆ab = ∆ξ,ab +∆ϵ,aa with

∆ξ,ab = Tr(Γ0′

b WΓ0
b)− Tr((Γ0

b +R0
aT ∗

ξ,ab)
′W(Γ0

b +R0
aT ∗

ξ,ab))

= Tr(Γ0′

b WR0
a(R0′

a WR0
a)

−1R0′

a WΓ0
b)

and ∆ϵ,aa = Tr(R0′
a WR0

a). For part 3 we need to show that ∆ab ≤ ∆a ≤ ∆ab + E0
ab, where

∆ab = L0 − L(T ∗
ab;ϕ

0, θ), ∆a = L0 − L(T ∗
a ;ϕ

0, θ) and E0
ab = L0 −Tr(Γ0′

b WΓ0
b)−Tr(R0′

a WR0
a).

For the lower bound we note that ∆ab ≤ ∆ is implied by L(T ∗
ab;ϕ

0, θ) = L(T ∗
ab, T−a,−b =

0;ϕ0, θ) ≥ L(T ∗
a ;ϕ

0, θ). For the upper bound ∆a ≤ ∆ab + E0
ab
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∆ξ,a = Tr(Γ0′WR0
a(R0′

a WR0
a)

−1R0′

a WΓ0)

= Tr(Γ0′

b WR0
a(R0′

a WR0
a)

−1R0′

a WΓ0
b) + Tr(Γ0′

−bWR0
a(R0′

a WR0
a)

−1R0′

a WΓ0
−b)

≤ ∆ab + E0
ab

where the inequality follows as E0
ab = L0 − Tr(Γ0′

b WΓ0
b) − Tr(R0′

a WR0
a) = Tr(Γ0′

−bWΓ0
−b) +

Tr(R0′
−aWR0

−a) and

Tr(Γ0′

−bWR0
a(R0′

a WR0
a)

−1R0′

a WΓ0
−b) ≤ Tr(Γ0′

−bWΓ0
−b) + Tr(R0′

−aWR0
−a) .
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Figure 2: Inflation and unemployment, 1879–2019
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Notes: Year-on-year inflation (GDP deflator) and the unemployment rate. The vertical
lines highlight the different periods: Pre Fed 1879-1912, Early Fed 1913-1941, Post WWII
1951-1984 and Post Volcker 1990-2019.

Table 1: Realized losses

Pre Fed Early Fed Post WWII Post Volcker
1879-1912 1913-1941 1951-1984 1990-2019

L0
π 24.3 83.0 11.9 0.7

L0
u 5.7 81.0 6.5 5.8

L0 30.0 164.0 18.4 6.5

Realized losses for inflation (Lπ), unemployment Lu and total (Lπ + Lu) for the different
periods.
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Table 2: Evaluation US Monetary Policy: 1879-2019

Panel (i) Distances to Minimum Loss (DML)
∆ab ∆a

Bank panics G Energy πe TFP MP [lower bound, upper bound]
Pre Fed
1879−1912

1.5
(0.3,3.5)

0.6
(0.1,2.1)

0.2
(0,0.6)

— 0.6
(0.1,1.7)

1.5
(0.7,3.2)

[2.9,17.3]

Early Fed
1913−1941

27.7
(11.5,67.4)

6.6
(0.8,24.3)

1.6
(0.1,8.6)

27.9
(9.4,70.4)

2.3
(0.2,11.8)

18.5
(8.8,37.9)

[66.1,101]

Post WWII
1951−1984

— 0.1
(0,0.8)

0.9
(0.1,3.5)

1.7
(0.3,5.5)

0.4
(0,2.3)

1.2
(0.4,3.2)

[3.1,11.0]

Post Volcker
1990−2019

0.1
(0,0.6)

0.1
(0,0.4)

0.2
(0,0.9)

0
(0,0.2)

0.1
(0,0.4)

0.7
(0.3,1.9)

[0.5,2.6]

Panel (ii) Optimal Reaction Adjustments (ORA)
Bank panics G Energy πe TFP Average |ORA|

u ↑ u ↑ π ↑ π ↑ π ↑
Pre Fed
1879−1912

−0.9∗

(−1.5,−0.3)
−0.6∗

(−1.3,0)
−0.1

(−0.5,0.4)
— 0.6

(−0.2,1.1)
0.6

Early Fed
1913−1941

−1.2∗

(−1.9,−0.8)
−0.5∗

(−0.9,−0.1)
0.0

(−0.3,0.3)
0.7∗

(0.3,1.0)
0.1

(−0.2,0.5)
0.5

Post WWII
1951−1984

— −0.2
(−0.8,0.3)

0.8∗
(0.1,1.4)

1.2∗
(0.6,1.8)

0.5
(−0.2,1.2)

0.7

Post Volcker
1990−2019

−0.3
(−0.8,0.2)

0.1
(−0.4,0.6)

−0.2
(−0.8,0.7)

−0.1
(−0.4,0.3)

−0.3
(−0.7,0.1)

0.2

Panel (i) shows median subset distance to minimum loss (DML, ∆ab) together with 68%
credible sets with each row and column reporting estimates for a different period and different
non-policy shock. The rightmost column reports median estimates for upper and lower
bounds for the total distance to minimum loss for the contemporaneous policy rate (∆a).
Panel (ii) shows median ORA statistics together with 68% credible sets corresponding to
different periods and non-policy shocks. The right column (“Average |ORA|”) reports the
average absolute ORAs estimated for each period. For both panels the financial shocks are
bank panics from Reinhart and Rogoff (2009), the government spending shocks (G) are from
Ramey and Zubairy (2018), TFP shocks from Gali (1999), energy shocks are computed using
the peak-over-threshold approach of Hamilton (1996), and inflation expectation shocks (πe).
For the Pre Fed period the TFP, G and Energy DML/ORAs are computed over the 1890-1912
period. The monetary policy shocks (MP) are identified as described in the main text: using
gold rush discoveries in the pre-Fed period, Romer and Romer (1989)’s Friedman-Schwartz
dates in the early Fed period, Romer and Romer (2004) monetary shocks for the post WWII
period and high-frequency surprises in the post Volcker period.
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Figure 3: Loss (L0) decomposition, 1879-2019
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Decomposition of L0 into the contribution of each identified shock (financial, government
spending, energy price, inflation expectation, TFP, monetary policy). The grey shaded area
depicts the unexplained part of L0. The top panel reports decomposition for the level of L0,
while the bottom panel reports the same decomposition but for the level of L0 normalized
on 1 in each period.
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Figure 4: Early Fed, 1913-1941, Reaction to Financial shocks
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The top (resp. bottom) row shows the median responses (thick line) of inflation, unemploy-
ment and the Fed’s discount rate to a monetary policy shock ϵ (resp. financial shock ξ).
The dotted green lines show the ORA adjusted impulse responses: Γ0+R0τ ∗0 . The 95% and
67% credible sets are plotted as dark and light shaded areas, respectively.
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Figure 5: Post Volcker Fed, 1990-2019, Reaction to Financial shocks
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The top (resp. bottom) row shows the median responses (thick line) of inflation, unem-
ployment and the fed funds rate to a monetary policy shock (resp. financial shock). The
dotted green lines show the ORA adjusted impulse responses: Γ0+R0τ ∗. The 95% and 68%
credible sets are plotted as dark and light shaded areas, respectively.
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Figure 6: Post WWII Fed, 1951-1984, Reaction to πe shocks
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The top (resp. bottom) row shows the median responses (thick line) of inflation, unemploy-
ment and the fed funds rate to a monetary policy shock (resp. inflation expectations shock).
The dotted green lines show the ORA adjusted impulse responses: Γ0+R0τ ∗. The 95% and
68% credible sets are plotted as dark and light shaded areas, respectively.
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